Solutions 12.

12-1: We try to obtain a_n as the linear combination of two geometric sequences. Thus, we write $a_n = Ax^n + By^n$, and our goal is to find the real numbers A, B, x, y. Then the recurrence relation yields $A\lambda^n + B\mu^n = 0$ for all non-negative integers n. Thus, assuming that neither A, B, λ, μ are roots of the quadratic polynomial $x^2 = (x-3)(x-2)$. So, we may take $\lambda = 3$ and $\mu = 2$. Thus, we obtain $a_n = 3^n + B2^n$. By $a_0 = a_1 = 1$, we obtain $a_n = -3^n + 2 \cdot 2^n$.

Note that to find the generating function of the sequence, we would use the recurrence relation to obtain $F(x) - 5xF(x) + 6x^2F(x)$ has 0 coefficients for all x^n where $n \geq 2$. Using the initial values, we get 1 and -4 for the coefficients of 1 and x. So, $F(x) - 5xF(x) + 6x^2F(x) = 1 - 4x$. Thus, $F(x) = \frac{1-4x}{1-5x-6x^2}$.

12-2:

(a) We can prove the statement by induction on n. The base case $n = 1$ is trivial. Assume that the statement holds for all $1 \leq k \leq n + 1$, we now show that it also holds for $n + 2$. Indeed, we have $F_{n+2} = F_{n+1} + F_n$. By the induction hypothesis, $F_{n+1} - 1 = F_1 + \cdots + F_{n-1}$, therefore, $F_{n+2} - 1 = F_1 + \cdots + F_n$.

(b) We can prove $F_{n+m} = F_{n-1}F_m + F_nF_{m+1}$ by induction on m. The base cases $m = 1, m = 2$ are trivial. Assume that the statement holds up to $m - 1$, we now show that it also holds for m. Indeed,

$$F_{n+m} = F_{n+m-1} + F_{n+m-2}$$
$$= F_{n-1}F_{m-1} + F_nF_m + F_{n-1}F_{m-2} + F_nF_{m-1}$$
$$= F_{n-1}F_m + F_nF_{m+1}.$$

(c) By using part (b), this part can be solved by induction on k.

12-3:

(a) We prove this for any prime p. Again, let $v_i \in F_p^n$ be the characteristic vector of A_i for every i. We will prove that the v_i are linearly independent. Suppose $\sum_{i=1}^n \alpha_i v_i = 0$ for some $\alpha_i \in F_p$, and take the inner product of this equation with v_j;

$$0 = \langle \sum_{i=1}^n \alpha_i v_i, v_j \rangle = \sum_{i=1}^n \alpha_i \langle v_i, v_j \rangle.$$

Here $\langle v_i, v_j \rangle = |A_i \cap B_j| \mod p = 0$ if $i \neq j$, and $\langle v_i, v_j \rangle = |A_j| \neq 0$ if $i = j$ by the assumption. Hence the above equation gives $0 = \alpha_j |A_j|$. As F_p is a field, this is only possible if $\alpha_j = 0$. Once again, we get that only the trivial linear combination gives zero, and the v_i are independent.

Alternatively, one can prove independence over \mathbb{Q} by choosing the α_i to be integers not all divisible by p (this is possible – if not all of them are zero – by multiplying all of them by some number).

(b) Let us assign the sets into two families X and Y: we put A_i in X if $|A_i|$ is not divisible by 2 and in Y if $|A_i|$ is not divisible by 3. We might put some sets into
both of X and Y, but the important thing is that every A_i sits in some of X and Y. (Otherwise $|A_i|$ would be divisible by 2 and 3, i.e., by 6.) Now for any sets $U, V \in X$, we know that $|U \cap U|$ is not divisible by 2, but $|U \cap V|$ is divisible by 2 (even by 6). Applying part (a) with $p = 2$, we see that X contains no more than n sets. We can similarly apply part (a) with $p = 3$ to Y and see that at most n sets are contained in Y. As every A_i is in at least one of X and Y, we get that there are at most $2n$ sets in total.

12-4: Suppose the v_i are linearly independent over \mathbb{F}_p and extend them to a basis v_1, \ldots, v_d. Let A be a matrix whose i'th column is v_i. As the v_i are linearly independent, this matrix has a nonzero determinant. But the determinant of A is the same over \mathbb{R} (modulo p), so the matrix is non-singular over \mathbb{R}: its columns form a basis. In particular, they are independent over \mathbb{R}.

Alternative solution: We saw in class that it is enough to show that the vectors are independent over \mathbb{Q}. Suppose $\sum_{i=1}^{m} \alpha_i v_i = 0$ for some $\alpha_i \in \mathbb{Q}$ not all zero. Then we can multiply this equation by the denominators of the α_i to get $\sum_{i=1}^{m} a_i v_i = 0$ for some integers a_i, not all 0. Let p^r be the highest power of p divisible by each a_i. Then $b_i = a_i/p^r$ is an integer for every i, not all the b_i are divisible by p, and $\sum_{i=1}^{m} b_i v_i = 0$. Looking at this equation modulo p, we get a nontrivial linear combination of the v_i over \mathbb{F}_p that vanishes. This contradiction shows that the v_i are independent over \mathbb{Q}.

12-5: Let $b_n = \log_2(a_n)$. Then we obtain

$$b_{n+2} = \frac{b_{n+1} + b_n}{2}.$$

Using the same method as in the exercise 1, we obtain $b_n = -\frac{4}{3} \left(\frac{1}{2}\right)^n + \frac{7}{3}$. Thus, $a_n = 4\sqrt{2} \cdot 2^{-\frac{n}{3}} \left(\frac{2}{3}\right)^n$. Finally, $\lim_{n \to \infty} a_n = 4\sqrt{2}$.