Solutions 9.

9-1:
(a) The probability of picking a girl = 9/21 = 3/7.
(b) The probability of picking a girl, provided that we pick a 3-year-old = 4/7.
(c) The probability of picking a 3-year-old, provided that it is a girl = 4/9.

9-2:
(a) We throw a fair die. Let X be the value mod 5, that is, X is 1,2,3,4,0,1 according to the die values 1,2,3,4,5,6. Let Y be the value of the die roll mod 2, that is, Y is 1,0,1,0,1,0 according to the die values 1,2,3,4,5,6.

(b) Both X and Y in the previous example satisfy $(E[X])^2 < E[X^2]$.

9-3:
Choose a random 3-coloring of the elements of X so that each element gets one of the 3 colors independently with probability $1/3$, and let C denote the random variable that counts the number of sets in F that have exactly one element of each color. We have

$$C = \sum_{Y \in F} I_Y,$$

where I_Y denotes the indicator random variable which is 1 if Y has exactly one element of each color and 0 otherwise, for $Y \in F$. We have

$$E[I_Y] = \text{prob}(I_Y = 1) = 3!/3^3,$$

because there are 3^3 colorings of the elements of Y and $3!$ of them assign each color to exactly one element of Y. By the linearity of expectation, we have

$$E(C) = E\left[\sum_{Y \in F} I_Y\right] = \sum_{Y \in F} E[I_Y] = \sum_{Y \in F} \frac{3!}{3^3} = |F| \cdot \frac{3!}{3^3}.$$

It follows that there is a coloring for which $C \geq |F| \cdot 3!/3^3$, that is, at least $|F| \cdot 3!/3^3$ sets in F have exactly one element of each color.

9-4:
Let X_i be 1 if the i-th position is a fixed point of the random permutation. Then the expected number of fixed points in a random permutation is $\sum_{i=1}^{n} E[X_i]$.

Since $E[X_i] = \text{prob}(X_i = 1) = 1/n$, we obtain that

$$\sum_{i=1}^{n} E[X_i] = n \cdot 1/n = 1.$$

9-5:
Let $X_{e_1...e_n} = \|\sum_{i=1}^{n} e_i v_i\|$. We choose the weights e_1, \ldots, e_n independently and uniformly at random, and for convenience, we consider the square of the Euclidean norm.

By the linearity of expectation, we obtain that

$$E\left[X_{e_1...e_n}^2\right] = E\left[\left\|\sum_{i=1}^{n} e_i v_i\right\|^2\right] = E\left[\left\langle\sum_{i=1}^{n} e_i v_i, \sum_{i=1}^{n} e_i v_i\right\rangle\right] = E\left[\sum_{i=1}^{n} e_i^2 \|v_i\|^2 + \sum_{i \neq j}^{n} e_i e_j < v_i, v_j >\right] = ...$$
\begin{align*}
&= \mathbb{E} \left[n + \sum_{i \neq j}^{n} \epsilon_i \epsilon_j < v_i, v_j > \right] = n + \mathbb{E} \left[\sum_{i \neq j}^{n} \epsilon_i \epsilon_j < v_i, v_j > \right].
\end{align*}

The expected value of the last sum is zero. Indeed, since \(\epsilon_i \) and \(\epsilon_j \) are independent, we have
\[
\mathbb{E} \left[\sum_{i \neq j}^{n} \epsilon_i \epsilon_j < v_i, v_j > \right] = \sum_{i \neq j}^{n} (\mathbb{E} \epsilon_i)(\mathbb{E} \epsilon_j) < v_i, v_j > = \sum_{i \neq j}^{n} 0 \cdot 0 < v_i, v_j >.
\]

In conclusion, the expected value of the square of the norm is \(n \), so there is at least one choice of the weights for which the vector has norm at least \(\sqrt{n} \).