Graph theory - solutions to problem set 2

Exercises

1. Prove the triangle-inequality in graphs: for any three vertices \(u, v, w \) in a graph \(G \),
\[
d(u, v) + d(v, w) \geq d(u, w).
\]

Solution. If \(d(u, v) = \infty \) or \(d(v, w) = \infty \), there is nothing to prove.
Otherwise, according to the definition of the distance, there is a \(u-v \) path of the length \(d(u, v) \) and a \(v-w \) path of the length \(d(v, w) \). Joining them together we obtain the \(u-w \) walk of the length \(d(u, v) + d(v, w) \).
We have seen in class, that this walk will then contain a \(u-w \) walk, which is clearly not longer than the walk. Therefore, the shortest \(u-w \) path is no longer than \(d(u, v) + d(v, w) \).

2. Show that a graph is connected if and only if it contains a spanning tree.

Solution. If there is a spanning tree then the graph is clearly connected: for any vertices \(u \) and \(v \), there will be a \(u-v \) path in the tree, hence in the graph, as well. If the graph is connected then the BFS algorithm finds a spanning tree, and this proves that a spanning tree exists.

3. Prove that a forest on \(n \) vertices with \(c \) connected components has exactly \(n - c \) edges.

Solution. Let \(T_1, \ldots, T_c \) be the components of the forest, on \(n_1, \ldots, n_c \) vertices, respectively. Each \(T_i \) itself is a connected acyclic graph, hence it is a tree (considered as a graph on its own). Therefore, \(T_i \) contains \(n_i - 1 \) edges for each \(i \). Altogether, the graph contains \(\sum_{i=1}^{c} (n_i - 1) = \sum_{i=1}^{c} n_i - c = n - c \) edges.

4. Let \(T \) be a tree and \(e \) be an edge of \(T \). Prove that \(T - e \) is not connected.

Solution. Let \(e = uv \) and suppose \(T - e \) is connected. Then, in particular, \(T - e \) contains a \(u-v \) path \(P \). But then \(P + e \) is a cycle in \(T \), a contradiction.

5. Let \(T \) be a tree and let \(u \) and \(v \) be two non-adjacent vertices of \(T \). Prove that \(T + uv \) contains a unique cycle.

Solution. \(T \) contains a \(u-v \) path and adding \(uv \) to it will form a cycle, so \(T + uv \) contains at least one cycle. Suppose it has two different cycles. Both of them must contain \(uv \), otherwise, removing \(uv \), we would get a cycle in \(T \). But then if we remove \(uv \), we get two different \(u-v \) paths in \(T \), which contradicts a result from the lecture. Hence there is a unique cycle.

Problems

6. Let \(G \) be a graph on \(n \) vertices. Prove that

(a) if \(G \) has \(dn \) edges, then it contains a path of length at least \(d \).
(b) if \(G \) has at least \(2n - 1 \) edges, then it contains an even cycle.

Solution.

(a) On the lecture we proved that \(G \) contains a subgraph \(H \) with \(\delta(H) > d \). By another result from the lecture, \(H \) contains a path of length at least \(\delta(H) \).
(b) On the lecture we proved that \(G \) contains a bipartite subgraph \(H \) with \(|E(H)| \geq \frac{|E(G)|}{2} \). We have that \(|V(H)| \leq n \) and \(|E(H)| \geq n \) in \(H \). Therefore, \(H \) contains a cycle (otherwise \(H \) is a forest, and the number of edges in a forest is strictly less than the number of vertices). Since \(H \) is a bipartite graph, this cycle has even length.
7. Let W be a closed walk that uses the edge e exactly once. Prove that W contains a cycle through e.

Solution. Let $v_1 v_2 \ldots v_n v_1$ be a shortest closed walk that uses the edge e exactly once. We claim that this walk is a cycle. Indeed, if $v_i = v_j$ for some $i < j$, then either the closed walk $v_1 \ldots v_i v_{j+1} \ldots v_1$ or the closed walk $v_i v_{i+1} \ldots v_j$ uses the edge e exactly once, and both of them are shorter, which is not possible. (Why doesn’t this argument work for an arbitrary walk that uses the edge e exactly twice?)

8. Prove that every connected graph on $n \geq 2$ vertices has a vertex that can be removed without disconnecting the remaining graph.

Solution. Take a spanning tree T of the graph. It has at least two leaves, say x and y. Then $T - x$ and $T - y$ are both connected, hence so are their supergraphs, $G - x$ and $G - y$.

9. Let T be a tree on n vertices that has no vertex of degree 2. Show that T has more than $n/2$ leaves.

Solution. T has $n - 1$ edges, so the sum of the degrees is $2n - 2$. Suppose T has at most $n/2$ leaves. Then at least $n/2$ vertices have degree at least 3. But then the sum of the degrees is at least $1 \cdot \frac{n}{2} + 3 \cdot \frac{n}{2} = 2n$, which is a contradiction.

10. Show that every tree T has at least $\Delta(T)$ leaves.

Solution. Let v be a vertex with degree $d = \Delta(T)$. For every edge vw incident to v, take a longest path starting with vw. By maximality (as in the proof that every tree has a leaf), the last vertex of this path is a leaf. Doing this for each of the d edges incident to v, we get d paths starting at v, which are disjoint except for v (otherwise we would get a cycle). Thus each path gives a different leaf, and we get $d = \Delta(T)$ leaves.

Alternative solution: If you remove v and its incident edges, you are left with d connected components T_1, \ldots, T_d, each of which is a tree. By a lemma from class, every tree with at least two vertices has at least two leaves. Hence the T_i with at least two vertices have at least two leaves, one of which must be a leaf of T (one of the two leaves might have been adjacent to v, but not both because that would give a cycle). Some of the T_i might be single vertices, in which case those vertices were leaves in T (they must have been adjacent to v and to no other vertex).

11. Let T be an n-vertex tree that has exactly $2k$ vertices of odd degree. Show that T can be split into k edge-disjoint paths (i.e., T is the union of k edge-disjoint paths).

Solution. We prove a more general statement: the above claim is true for forests, not only trees. Making our problem more general allows us to use a simpler induction argument.

So let us do induction on k. For $k = 0$ our forest is empty (every nonempty forest has a leaf, thus an odd-degree vertex), so the statement holds. Now assume we know it for k, and take a forest T with $2k + 2$ odd-degree vertices. Let P be a maximal path in T. We have seen in class that P will connect two leaves. We claim that if we delete the edges of P then we get a forest $T - P$ with $2k$ odd-degree vertices. Indeed, the two leaves will lose the edge touching them, so they have degree 0 in $T - P$, while every other vertex loses either 0 or 2 incident edges, hence the parity of its degree does not change. In other words, we lost two odd-degree vertices and did not gain anything. So we can apply induction on $T - P$ to get k paths partitioning its edge set. Together with P we have $k + 1$ paths partitioning the edge set of T, which is what we wanted to show.