Solutions 5.

5-1: Suppose that \(e \) belongs to a minimal spanning tree, \(T \). Delete \(e \) from \(T \), and obtain a forest of two components, \(A \) and \(B \). Since \(G \) has a cycle containing \(e \), there is another edge \(f \) in the cycle in \(G \) that connects \(A \) to \(B \). By the choice of \(e \), \(f \) has larger cost. Replace \(e \) by \(f \) in \(T \), and obtain a smaller cost spanning tree, a contradiction.

5-2: Suppose there are two minimal weight spanning trees, \(T_1 \) and \(T_2 \). Consider all those edges of \(T_1 \) and \(T_2 \) that are only in \(T_1 \) or only in \(T_2 \). Among these edges, let \(e \) be the largest cost edge. We may assume that \(e \) is in \(T_1 \) and is not in \(T_2 \). Deleting \(e \) from \(T_1 \) disconnects \(T_1 \) into two components, \(A \) and \(B \). Since \(T_2 \) is a spanning tree, there is at least one edge in \(T_2 \) connecting \(A \) and \(B \). Let \(f \) be the smallest cost such edge. Now, \(f \) is in \(T_2 \) and not in \(T_1 \), so, by the choice of \(e \), \(f \) has smaller cost than \(e \). On the other hand, if in \(T_1 \), we replace \(e \) by \(f \), we obtain a smaller cost spanning tree, thus, \(T_1 \) is not of minimal cost, a contradiction.

5-3: Yes, the algorithm works. Add a large positive number to all edge costs. Then the minimal weight spanning tree produced by Kruskal’s algorithm will be the same.

5-4: The resulting tree:

5-5: The proof is similar to the proof the Kruskal’s algorithm produces a minimal weight spanning tree. We will show it in the case when the weights are all different. The case when some weights might be equal requires small modifications.

Suppose for a contradiction that there is a minimal weight spanning tree \(T \) whose weight is less than that of the tree found by Prim’s algorithm, which we will denote by \(P \).

Number the edges of \(P \) as \(e_1, e_2, \ldots \) by the order in which they are selected by the algorithm. Let \(i \) be the smallest index for which \(e_i \) is not in \(T \). Let \(A \) denote the tree whose edges are \(e_1, \ldots, e_{i-1} \). So, the edges in \(A \) are shared by \(P \) and \(T \). Clearly, one of the two endpoints of \(e_i \), denote it by \(u \) is in \(A \), and the other one, denote it by \(v \), is not.

Now, \(T \) is connected, so let \(p \) be a path in \(T \) from \(u \) to \(v \). Let \(f \) be the first edge of the path \(p \) that connects a vertex of \(A \) to a vertex outside of \(A \). By the algorithm, \(e \) has smaller cost than \(f \).

On the other hand, \(p \cup \{ e_i \} \) is a cycle, so, by replacing \(f \) by \(e_i \) in \(T \), we obtain a tree which is of lower cost than \(T \), a contradiction.

5-6: The answer is \(|V(T_1)| \ldots |V(T_k)| \cdot |V(T)|^{k-2} \).
We will use the following fact:
Let \(p(x_1, \ldots, x_n) \) be the following polynomial of \(n \) variables:
\[
p(x_1, \ldots, x_n) = \sum_T x_1^{d_T(1)-1} \cdots x_n^{d_T(n)-1},
\]
were the sum is taken over all labeled trees \(T \) on the set \([n]\), and \(d_T(i) \) denotes the degree of \(i \), that is the number of edges incident with \(i \) in \(T \).

We claim without proof here that
\[
p(x_1, \ldots, x_n) = (x_1 + \ldots + x_n)^{n-2}.
\] (1)

Now, consider the exercise. Contract \(T_1, \ldots, T_k \) to one point each. Then any labeled tree \(F \) on \(V \) becomes a labeled tree \(T \) on \(k \) vertices. We need to compute how many trees \(F \) are mapped to the same \(T \).

Let us try to reconstruct \(F \) from a fixed \(T \). Consider an edge of \(T \) between two vertices \(i \) and \(j \). There are \(|V(T_i)| \cdot |V(T_j)| \) ways of realizing this edge in \(F \). Thus, the number of trees \(F \) on \(V \) that are mapped to the same \(T \) is
\[
\prod_{e=(i,j): \text{an edge of } T} |V(T_i)| \cdot |V(T_j)|,
\]
which is
\[
\prod_{i=1}^{k} |V(T_i)|^{d_T(i)}.
\]

So, the total number of trees \(F \) on \(V \) is
\[
\sum_T \prod_{i=1}^{k} |V(T_i)|^{d_T(i)},
\]
which, by (1) is \(|V(T_1)| \ldots |V(T_k)| \cdot |V(T)|^{k-2} \).

5-7: Take an arbitrary tree \(T \) on the vertices \(v_1, \ldots, v_k \). Any forest of \(k \) components where \(v_1, \ldots, v_k \) are in distinct components, together with \(T \) is a tree on \(n \) vertices, and vica-versa. So, we need to compute how many labeled trees on \(n \) vertices contain a given labeled subtree on a given subset of \(k \) vertices. Using the previous exercise, we obtain \(k \cdot n^{n-k-1} \).