Right angles in vector spaces

Thang Pham Nguyen Minh Sang Gábor Tardos

Abstract

Bennett (2015) proved that, for \(A \subseteq \mathbb{F}^d_q \), if \(|A| \geq 2q^{d+2}/3\) then \(A \) contains a right angle. The main purpose of this paper is to improve this result by using methods from spectral graph theory and combinatorial arguments. We also prove that if \(q^{d+1}/2 = o(|A|) \) then the number of right angles in \(A \) is \((1 - o(1))|A|^3/q\), and in general the exponent \(d+1/2 \) is sharp.

1 Introduction

In 1946, Paul Erdős [13] made the first investigation of the distribution of the \(\binom{n}{2} \) distances determined by a set of points in the plane \(\mathbb{R}^2 \). More precisely, he asked for the maximal number \(f(n) \) of unit distances among \(n \) points in the plane. For large \(n \), he proved that

\[
ne^{-\log \log n} < f(n) < n^{3/2}.
\]

The lower bound has not been improved since 1946, and it is conjectured to be asymptotically tight. The upper bound was improved to \(O(n^{4/3}) \), see [7, 19] for more details.

In 1990, Pach and Sharir [20] studied a similar problem concerning the distribution of the \(3\binom{n}{3} \) angles determined by a triple of an \(n \)-element point set in the plane \(\mathbb{R}^2 \). They, using an ingenious counting argument, proved that, for any given angle \(0 < \alpha < \pi \), there exists a constant \(c > 0 \) such that the number of ordered triples of \(n \) points in the plane, which determine the same angle \(\alpha \), is at most \(cn^2 \log n \). Furthermore, apart from the value of \(c \), this bound is best possible for infinitely many \(\alpha \).

Let \(\mathbb{F}_q \) be a finite field of \(q \) elements where \(q \) is a prime power. The remarkable results of Bourgain, Katz, and Tao [8] on sum-product estimate and its applications on Erdős distinct distances problem and the Szemerédi-Trotter theorem over finite fields have stimulated a lot of research of finite field analogues of classical discrete geometry problems in recent years, see for example [10, 11, 12, 16, 17, 18, 21, 22], and references therein.

In vector spaces over finite fields, we say that an ordered triple of distinct points \((x, y, z) \in \mathbb{F}^d_q \times \mathbb{F}^d_q \times \mathbb{F}^d_q\) forms a right angle if the vectors \(x - y \) and \(z - y \) have dot product 0. For any set \(A \subseteq \mathbb{F}^d_q \), we denote the set of right angles determined by \(A \) by \(Ra(A) \). Recently, Bennett [9] studied the following question in vector spaces over finite fields: How large does a set \(A \subseteq \mathbb{F}^d_q \) need to be such that there are three distinct points in \(A \) which form a right angle? He proved that, for any set \(A \subseteq \mathbb{F}^d_q \), if \(A \) is sufficiently large, then \(|Ra(A)| > 0 \). Formally, the statement is as follows.

Theorem 1.1 (Bennett [9]). Let \(A \) be a set in \(\mathbb{F}^d_q \). If \(|A| \geq 2q^{d+2}/3\), then we have \(|Ra(A)| > 0\).
The main purpose of this paper is to improve Theorem 1.1 by using methods from spectral graph theory and combinatorial arguments. In our first result, we prove that

Theorem 1.2. Let A be a set in \mathbb{F}_q^d,

(i) if $d = 3k - 1$ with $k \geq 1$, and $|A| \geq 2^9d^2q^{d+1}\log q$, then $|Ra(A)| > 0$.

(ii) if $d = 3k$ or $d = 3k + 1$ with $k \geq 1$, and $|A| \geq cq^{d+1} + \frac{k}{d-1}(\log q)^{\frac{k}{d-1}}$ for some positive constant $c = c(k)$, then $|Ra(A)| > 0$.

For a given triple of distinct points (a, b, c) in A^3, the probability of $(a - b) \cdot (c - b) = 0$ is approximately $1/q$, so we expect that the number of right angles determined by A is approximately $|A|^3/q$. In the following result, we show that if $|A| = \Omega(q^{d/2})$ with d even, then the number of right angles determined by A is not much smaller than the expected value.

Theorem 1.3. Let A be a set in \mathbb{F}_q^d with d even,

(i) if $|A| \geq 3q^{d/2}$, then there exists a positive constant c such that $|Ra(A)| \geq \frac{c|A|^3}{q}$.

(ii) if $q^{d/2} = o(|A|)$, then we have $|Ra(A)| \geq (1 - o(1))\frac{|A|^3}{q}$.

Here and throughout, $x = o(y)$ means that for fixed d, x and y are functions of the parameter q, and $x/y \to 0$ as $q \to \infty$.

Theorem 1.3 implies that if A is a set in \mathbb{F}_q^3 of cardinality at least $3q$, then A contains at least one right angle. This bound is sharp up to a constant factor, since there exists a trivial construction with q points on a line containing no right angle. However, in higher dimensions, we do not have any non-trivial construction of $q^{1+\epsilon}$ points containing no right angle with $\epsilon > 0$. If $q \equiv 3 \mod 4$, then we obtain the following set of $d(q-1)/2$ points in \mathbb{F}_q^d that contains no right angle:

$$A = \bigcup_{i=1}^{d} \{x^2e_i : x \in \mathbb{F}_q \setminus \{0\}\},$$

where e_i is the i-th unit vector. With this example, we are led to the following conjecture.

Conjecture 1.4. Let A be a set in \mathbb{F}_q^d. There exists a constant $c = c(d)$ such that A contains a right angle when $|A| \geq cq$.

While Theorem 1.3 only tells us a lower bound on the number of right angles determined by points in A, in the following result we give an upper bound of $|Ra(A)|$ when A is large enough.

Theorem 1.5. Let A be a set in \mathbb{F}_q^d. If $q^{d+1} = o(|A|)$, then we have

$$|Ra(A)| = (1 - o(1))\frac{|A|^3}{q}.$$
angle in $\mathbb{F}_q^{2k} \times \{0\}$. For each of these triples, if we take $\mathbf{a}' = (a, \lambda)$, $\mathbf{b}' = (b, \lambda)$, $\mathbf{c}' = (c, \lambda)$, for some $\lambda \neq 0$, then $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$ also forms a right angle in A. This implies that the number of right angles in A is at least $\Theta \left(\frac{q^d}{q^{1/2}} \right)$.

This rest of this paper is organized as follows. In Section 2, we recall the expander mixing lemma for pseudo-random graphs, and some properties of some certain graphs over finite fields which will be used in the proofs of Theorem 1.2 and Theorem 1.5. A proof of Theorems 1.2 is given in Sections 3. Proofs of Theorem 1.3 and Theorem 1.5 are given in Section 4 and Section 5, respectively.

2 Tools from spectral graph theory

For a graph G, let $\gamma_1 \geq \gamma_2 \geq \ldots \geq \gamma_n$ be the eigenvalues of its adjacency matrix. The second largest eigenvalue of G is defined as $\gamma(G) := \max\{\gamma_2, -\gamma_n\}$. A graph $G = (V, E)$ is called an (n, d, γ)-graph if G is a d-regular graph with n vertices, and $\gamma(G) \leq \gamma$. For any two vertex sets U and W, we have the following estimate on the number of edges between U and W in G.

$$\left| e(U, W) - \frac{d|U||W|}{n} \right| \leq \gamma \sqrt{|U||W|}.$$ (1)

The interested reader can find an easy proof of (1) in [1, Corollary 9.2.5].

In the proof of Theorem 1.2, we will make use of the sum-product graph which is constructed as follows.

Sum-product graph over finite fields: Let $B(\cdot, \cdot)$ be a non-degenerate bilinear form on \mathbb{F}_q^d. The sum-product graph $SP(\mathbb{F}_q^{d+1})$ is defined as follows. The vertex set is the set \mathbb{F}_q^{d+1}, and there is an edge between two vertices $(a, b), (c, d) \in \mathbb{F}_q^d \times \mathbb{F}_q$ if $B(a, c) + b + d = 0$.

It is clear that the graph $SP(\mathbb{F}_q^{d+1})$ is a q^d-graph of order q^{d+1}. By elementary calculations, Vinh [23] proved the following lemma.

Lemma 2.1 ([23]). For any prime power q and $d \geq 1$, the second largest eigenvalue of the sum-product graph $SP(\mathbb{F}_q^{d+1})$ is bounded from above by $\sqrt{2q^d}$.

In the proof of Theorem 1.5, we will make use of the Erdős-Rényi graph which is constructed as follows.

Erdős-Rényi graph over finite fields: Let $PG(q, d)$ denote the projective space of dimension $d-1$ over the finite field \mathbb{F}_q. The vertices of $PG(q, d)$ correspond to the equivalence classes of the set of all non-zero vectors $\mathbf{x} = (x_1, \ldots, x_d)$ over \mathbb{F}_q, where two vectors \mathbf{x} and \mathbf{y} are equivalence if $\mathbf{x} = \lambda \mathbf{y}$ for some $\lambda \in \mathbb{F}_q \setminus \{0\}$. Let $ER(\mathbb{F}_q^d)$ denote the graph whose vertices are the points of $PG(q, d)$ and two vertices $[x]$ and $[y]$ are adjacent if and only if $x_1y_1 + \cdots + x_dy_d = 0$. Note that this graph has loops and if a vertex has a loop, loops contribute 1 to the degree. It is easy to check that $ER(\mathbb{F}_q^d)$ is a graph of order $\frac{q^d-1}{q-1}$, and the degree of each vertex is $\frac{q^{d-2} - 1}{q-1}$. In [2], Alon and Krivelevich gaved the following theorem on the second largest eigenvalue of $ER(\mathbb{F}_q^d)$.

Theorem 2.2. For any prime power q and $d \geq 2$, the second largest eigenvalue of the Erdős-Rényi graph $\mathcal{E}R(\mathbb{F}_q^d)$ is bounded from above by $q^{(d-2)/2}$.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 in a more general statement as follows.

Theorem 3.1. Let $B(\cdot, \cdot)$ be a non-degenerate bilinear form on \mathbb{F}_q^d, and A be a set in \mathbb{F}_q^d.

(i) if $d = 3k - 1$ with $k \geq 1$, and $|A| \geq 2^d q^{d+1} \log q$, then there exist three distinct points a, b, c in A satisfying

$$B(a - b, c - b) = 0.$$

(ii) if $d = 3k$ or $d = 3k + 1$ with $k \geq 1$, and $|A| \geq cq^{d+1} + k \log q^{\frac{k}{d-1}}$ for some positive constant $c = c(k)$, then there exist three distinct points a, b, c in A satisfying

$$B(a - b, c - b) = 0.$$

In order to prove Theorem 3.1, we make use of the following lemmas.

Definition 3.2. For any integer $h \geq 1$, a h-flat is a translate of a subspace of dimension h in \mathbb{F}_q^d.

Lemma 3.3 (Theorem 2.3, [11]). Let P be a set of points, H be a set of h-flats in \mathbb{F}_q^d. Then the number of incidences between points and h-flats, $I(P, H)$, satisfies

$$
\left| I(P, H) - \frac{|P||H|}{q^{d-h}} \right| \leq 2q^{(d-h)h/2} \sqrt{|P||H|}.
$$

Lemma 3.4. Let P be a set of points in \mathbb{F}_q^d, H a set of h-flats in \mathbb{F}_q^d containing at least k points from P. If $k \geq 2|P|/q^{d-h}$, we have

$$|H_k| \leq \frac{16q^{(d-h)h}|P|}{k^2}.$$

Proof. It follows from Lemma 3.3 that

$$I(P, H_k) \leq \frac{|P||H_k|}{q^{d-h}} + 2q^{(d-h)h/2} \sqrt{|P||H_k|}.$$

On the other hand, we have $I(P, H_k) \geq k|H_k|$. Thus

$$k|H_k| \leq \frac{|P||H_k|}{q^{d-h}} + 2q^{(d-h)h/2} \sqrt{|P||H_k|}$$

which implies that

$$|H_k| \leq \frac{4q^{(d-h)h}|P|}{(k - \frac{|P|}{q^{d-h}})^2} \leq \frac{16q^{(d-h)h}|P|}{k^2},$$

since $k \geq 2|P|/q^{d-h}$, and the lemma follows.

Our next lemma can be proved by elementary calculations.
Lemma 3.5. For any fixed line \(l \) in \(\mathbb{F}_q^d \). The number of \(h \)-flats with \(h > 1 \) in \(\mathbb{F}_q^d \) containing \(l \) is at least \(q^{(d-h)(h-1)} \).

Let \(\mathcal{A} \) be a set in \(\mathbb{F}_q^d \). For three distinct points \(a, b, c \) in \(\mathcal{A} \), we observe that if these points satisfy \(B(a - b, c - b) = 0 \), i.e. \((a, b, c) \) forms a right angle at \(b \), then there is an incidence between \(c \) and the flat defined by the following equation:

\[
B(a - b, x) - B(a - b, b) = 0. \tag{2}
\]

On the other hand, we note that for two pairs of points \((a, b)\) and \((c, e)\) in \(\mathcal{A}^2 \) if

\[
(a - b, -B(a - b, b)) = \lambda \cdot (c - e, -B(c - e, e)),
\]

for some \(\lambda \in \mathbb{F}_q \setminus \{0\} \), then the corresponding flats are the same.

For any pair of distinct points \((a, b)\) \(\in\) \(\mathcal{A}^2 \), we define

\[
p_{a,b} := (a_1 - b_1, \ldots, a_d - b_d, -B(a - b, b)) \in \mathbb{F}_q^{d+1},
\]

and \([p_{a,b}]\) is its congruence class in the projective space \(PG(q, d+1) \). Let \(U \) be the set of points \(p_{a,b} \), with \((a, b) \in \mathcal{A}^2, a \neq b \), such that there are no two points with the same congruence class.

One can easily see that an incidence between a point \(c \in \mathcal{A} \) and a flat defined by the equation \((2)\) can also be viewed as an edge between the vertex \(\mathcal{A} \times \{0\} \) and the vertex \(p_{a,b} \) in the sum-product graph \(\mathcal{S}\mathcal{P}(\mathbb{F}_q^{d+1}) \).

For two points \(a \) and \(b \) in \(\mathbb{F}_q^d \), we say that \(a \) and \(b \) are \(B \)-orthogonal if \(B(x, y) = 0 \). For \(a \neq b \), let \(l_{a,b} \) be the line passing through \(a \) and \(b \). One can check that the flat defined by the equation \((2)\) goes through \(b \) and is \(B \)-orthogonal to the line \(l_{a,b} \).

For three distinct points \((x, a, b)\) \(\in\) \(\mathcal{A}^3 \), if there is an edge between \(x \times \{0\} \) and \(p_{a,b} \) \(\in\) \(U \) in the the graph \(\mathcal{S}\mathcal{P}(\mathbb{F}_q^{d+1}) \), then we have a right angle formed by the triple \((x, a, b)\) at \(b \). Furthermore, there is always an edge between \(x \times \{0\} \) and \(p_{a,a} \) in \(\mathcal{S}\mathcal{P}(\mathbb{F}_q^{d+1}) \), and note that when \(B(a - b, a - b) = 0 \), we also have an edge between \(a \times \{0\} \) and \(p_{a,b} \) in \(\mathcal{S}\mathcal{P}(\mathbb{F}_q^{d+1}) \).

Thus if we are able to prove that there are at least \(2|\mathcal{A}|^2 + 1 \) edges between \(\mathcal{A} \times \{0\} \) and \(U \) in the graph \(\mathcal{S}\mathcal{P}(\mathbb{F}_q^{d+1}) \), then we conclude that there is a right angle determined by points in \(\mathcal{A} \).

If \(\mathcal{A} \) contains no right angle, one can check that \([p_{a,b}] = [p_{c,e}]\) if \(c \) lies on the line \(l_{a,b} \) and \(b = e \). Hence, in this case, the cardinality of \(U \) depends on the number of rich lines determined by \(\mathcal{A} \). In the rest of this section, our main focus is on estimates on the size of \(U \).

Bennett [9] used the fact that any line in \(\mathbb{F}_q^d \) contains \(q \) points to get the threshold \(q^{d/2} \) on the size of \(\mathcal{A} \) in Theorem 1.1. In this paper, our main idea is to prove that either there is a lower dimensional subspace with many points or the number of rich lines determined by \(\mathcal{A} \) is not many. From this fact, we are able to improve the threshold \(q^{d/2} \) to \(q^{d/1} \) for the case \(d = 3k - 1 \) and to \(q^{d/1 + \frac{k}{2}(\log q)^{\frac{1}{k-1}}} \) for other cases.

Proof of Theorem 3.1: We now start proving Theorem 3.1 (i), i.e. the case \(d = 3k - 1 \). Suppose that \(\mathcal{A} \) contains no right angle and \(|\mathcal{A}| \geq \max \{32q^{(k+1)/2}, 2^9dq^{d-k} \log q\} \), we show that this leads to a contradiction.
Let $h = 2k - 1$, it follows from Lemma 3.5 that each line l is contained in at least $q^{(d-h)(h-1)}$ h-flats in \mathbb{F}_q^d. We first prove that the number of pairs of distinct points $(a, b) \in A \times A$ satisfying $|a, b| \geq \frac{|2|A|}{q^h}$ is at most $|A|^2/4$.

$$
\sum_{l \subseteq \mathbb{F}_q^d} \binom{|l \cap A|}{2} \leq \frac{1}{q^{(d-h)(h-1)}} \sum_{H \subseteq \mathbb{F}_q^d} \binom{|H \cap A|}{2} \leq \frac{1}{q^{(d-h)(h-1)}} \sum_{j=1}^{2^{j-1} |A|} \binom{2^j |A|}{2} \leq 16q^{(d-h)} |A| \sum_{j=1}^{2^j |A|} \binom{2^j+1 |A|}{q^{d-h}} \leq 2^6 d |A| q^{d-h} \log q.
$$

Since $|A| \geq 2^h d q^{d-h} \log q$, the number of pairs of points on lines passing through at least $2|A|/q^{d-h}$ points is at most $|A|^2/4$.

As we observed before when $[pa,b] = [p, c, e]$, we have c lies on the line $l_{a,b}$ and $b = e$. Thus there is a subset $W \subseteq U$ of $|A|q^{d-h}/8$ points.

Let $V := A \times \{0\} \subseteq \mathbb{F}_q^{d+1}$, we now show that the number of edges between V and W in the sum-product graph $SP(\mathbb{F}_q^{d+1})$ is at least $\frac{|W||A|}{2q}$ under the condition $|A| \geq 32q^{(h+1)/2}$.

Indeed, let $W^* := \{ \lambda \cdot p_{a,b} : \lambda \in \mathbb{F}_q \setminus \{0\}, p_{a,b} \in W \} \subseteq \mathbb{F}_q^{d+1}$. Since all points in U have distinct congruence classes, we have $|W^*| = (q-1)|W|$. On the other hand, an edge between a vertex in V and a vertex in W in the sum-product graph $SP(\mathbb{F}_q^{d+1})$ corresponds to $q-1$ distinct edges between V and W^* in $SP(\mathbb{F}_q^{d+1})$.

It follows from (II) and Theorem 2.1 that $e(V, W')$ is bounded from below by

$$
e(V, W') \geq \frac{|W'||V|}{q} - \sqrt{2} q^{d/2} \sqrt{|W'||V|}.
$$

This implies that

$$
e(V, W) \geq \frac{(q-1)||W||V|}{(q-1)q} - \sqrt{2} q^{d/2} \sqrt{(q-1)||W||V|} \geq \frac{|W||V|}{q} - \sqrt{2} q^{d/2} \sqrt{|W||V|} \geq \frac{|W||A|}{2q},
$$

under the condition $|A| \geq 32q^{(h+1)/2}$.

Moreover, $e(V, W) \leq 2|W|$ since we assumed that A contains no right angle, and an edge between $p_{a,b} \in W$ and $c \in V$ means that $c = a$ or $c = b$. It follows that

$$2|W| \geq \frac{|W||A|}{2q},
$$
which leads to a contradiction as $|A| \geq 32q^{(h+1)/2}$ and $h \geq 1$. Thus the first case of Theorem 3.1 follows.

We now prove the second case of Theorem 3.1, i.e. $d = 3k$ or $d = 3k + 1$. Note that in the proof of Theorem 3.1 (ii) we will apply the result from the first case for a flat. Therefore we need to check whether Theorem 3.3 and arguments in the proof of Theorem 3.1 (i) also work for the case of flats.

In fact, in Theorem 3.3 if P and H are sets in a d'-flat, with $h < d' \leq d$, then one can find a transformation that maps P to a set of points in $\mathbb{F}_q^{d'}$ and H to a set of h-flats in $\mathbb{F}_q^{d'}$ such that it preserves incidences between points and flats. Thus Theorem 3.3 is also true for sets in a flat in \mathbb{F}_q^d. Moreover, our arguments in the proof of Theorem 3.1 (i) also works nicely for the case when A is a set in a d'-flat in $\mathbb{F}_q^{d'}$, so when A is a set in a d'-flat, we can view A as a set in \mathbb{F}_q^d, and then apply Theorem 3.1 (i).

Let $n = \left(\frac{3k+7}{3k-1} q^k \log q\right)^{1/(3k-1)}$. Suppose that $|A| = m \geq 4q^{d+1}n^{1/3}$ and A contains no right angle, we now prove that it also leads to a contradiction.

We say that a point $a \in A$ is rich if $|\{l_{a,b} : b \in A\}| \geq m/4n$. If $a \in A$ is rich then we replace A by $A - \{a\}$. For the sake of simplicity, we will use the notation A for the remaining set, and there is no problem with our arguments below. We repeat this process for the remaining set until either there is no more such a or the cardinality of the remaining set is $m/2$. After this process, we now consider two cases:

Case 1. If the cardinality of A is $m/2$, then we have removed $m/2$ points from A, and $|\{(a, l_{a,b}) : a, b \in A\}| \geq m^2/8n$. Since A contains no right angle, by using the same arguments as above, there exists a subset W of U of $m^2/8n$ distinct points $[a,b]$, with $a \neq b \in A$. Thus, it follows from (1) and Theorem 2.2 that $e(U, V) > |U|$ when $m \geq 4q^{(d+1)/3}n^{1/3}$. This implies that A contains a right angle, which leads to a contradiction.

Case 2. There is no rich point $a \in A$, and $|A| \geq m/2$. Then, for each point $a \in A$, the number of lines containing a is smaller than $m/4n$, which implies that the number of points $b \in A$ such that $|l_{a,b} \cap A| \leq n - 1$ is at most $m/4$. Thus, for any point $a \in A$, the number of points $b \in A$ such that $|l_{a,b} \cap A| \geq n$ is at least $m/4$. Let l be a line in \mathbb{F}_q^d such that $l \cap A$ contains n distinct points $\{x_1, \ldots, x_n\}$. We define

$$s_i = |\{a \in A \setminus l : |l_{a,x_i} \cap A| \geq n\}|, \ 1 \leq i \leq n.$$

Then $s_i \geq m/4$ for all $1 \leq i \leq n$, and $\sum_{i=1}^n s_i \geq nm/4$. On the other hand, we have

$$\sum_{i=1}^n s_i = \sum_{a \in A \setminus l} T_a,$$

where T_a is the number of points x_i such that $|l_{a,x_i} \cap A| \geq n$. By the pigeonhole principle, there exists a point $a \in A \setminus l$ such that

$$T_a \geq \frac{nm}{m/2 - n} \geq \frac{n}{2}.$$

Let F^2 be the two dimensional flat spanned by l and a. Then we have $|F^2 \cap A| \geq n^2/2 - n/2$. After repeating the above arguments $3k - 2$ times, we obtain a flat of dimension $3k - 1$, which is denoted by F^{3k-1}, satisfying $|F^{3k-1} \cap A| \geq \frac{n^{3k-1}}{2^{3k-2}} - \frac{n^{3k-2}}{2^{3k-2}}$. Note that we can repeat
the above process $3k-2$ times because otherwise A will be a set in a lower dimensional flat, and we can apply directly Theorem 3.1(i).

To complete the proof, we now apply Theorem 3.1 (i) for the flat F^{3k-1}. Indeed, since A contains no right angle, it follows from Theorem 3.1 (i) that $|F^{3k-1} \cap A| < 2^q (3k-1) q^k \log q$. This implies that
\[n < \left(\frac{3k+7}{2^{3k-1}} (3k-1) q^k \log q \right)^{1/(3k-1)}, \]
which leads to a contradiction.

Putting case 1 and case 2 together gives us that A contains at least a right angle under the condition $|A| \geq 4q^{d-k} n^{1/3}$. This completes the proof of the theorem. \(\Box\)

\section{Proof of Theorem 1.3}

Let d be an even integer, U and V be $d/2$-dimensional subspaces in \mathbb{F}_q^d. We say that (U, V) forms a direction in \mathbb{F}_q^d if and only if U and V are orthogonal, and $U \cap V = \{0\}$. Let (U, V) be a direction. We say that a right angle (u, p, v) at p is in the direction (U, V) if $u - p \in U$ and $v - p \in V$. We note here that a right angle can be occurred in many directions. In the following lemma, we estimate the number of directions in \mathbb{F}_q^d with d even.

\textbf{Lemma 4.1.} The number of directions in \mathbb{F}_q^d with d even is at least $(1 - o(1))q^{d^2/4}$.

\textbf{Proof.} Let X be the set of solutions of the following equation in \mathbb{F}_q^d
\[x_1^2 + \cdots + x_d^2 = 0. \]
Let k be an integer, and m be the number of subspaces of dimension k in \mathbb{F}_q^d that contain at least one element in X. We now use induction on k to prove that $m = o(q^{(d-k)k})$ with $1 \leq k \leq d/2$.

The base case $k = 1$ is trivial. Suppose the claim holds for $k - 1 \geq 2$, we now show that it also holds for k. Indeed, by induction hypothesis, we have the number of $(k-1)$-subspaces containing at least one element from X is $o\left(q^{(d-k+1)(k-1)}\right)$. Moreover, each of these $(k-1)$-subspaces is contained in at most q^k subspaces of dimension k. By basic calculations, we have that if a k-subspace S satisfies $S \cap X \neq \emptyset$, then S contains at least q^{k-1} subspaces of dimension $k-1$, which intersect X. In short, we obtain
\[m \leq o\left(q^{(d-k+1)(k-1)}\right) \cdot q^k / q^{k-1} = o\left(q^{(d-k+1)(k-1)+1}\right) = o(q^{(d-k)k}), \]
since $1 \leq k \leq d/2$. Therefore the lemma follows with $k = d/2$. \(\Box\)

Let G be a graph, and P_4 a path of length 3. We say that a homomorphism $\phi: P_4 \to G$ is degenerate if $|\phi(P_4) \cap V(G)| \leq 3$. In order to prove Theorem 1.3, we need the following lemma on the number of homomorphisms between P_4 and graphs G, which is a special case of Sidorenko’s conjecture.

\textbf{Lemma 4.2.} Let G be a graph with n vertices and m edges. Then the number of homomorphisms from P_4 to G is at least $8m^3/n^2$.

8
Proof of Theorem 1.3: Let \((U, V)\) be a fixed direction. We construct a bipartite graph \(G_{U,V} = (A \cup B, E)\) as follows: \(A\) is the set of translates of \(U\) in \(\mathbb{F}^d_q\), \(B\) is the set of translates of \(V\) in \(\mathbb{F}^d_q\), and there is an edge between \(U' \in A\) with \(V' \in B\) if and only if there exists \(a \in A\) such that \(a = U' \cap V'\). Thus \(G\) is a bipartite graph with \(2q^{d/2}\) vertices and \(|A|\) edges. For \(2 \leq i \leq 4\), let \(H_i(U, V)\) denote the number of homomorphisms \(\phi\) from \(P_i\) to \(G_{U,V}\) with \(|\phi(P_i) \cap V(G_{U,V})| = i\). Then it is easy to check that the number of right angles determined by \(A\) in the direction \((U, V)\) equals \(H_4(U, V)/2\), and \(H_2(U, V) = 2|A|\). For a fixed pair of distinct points \((a, b) \in A \times A\), there are at most \(2q^{d^2-\frac{d}{2}}\) flats of dimension \(d/2\) containing the line passing through \(a\) and \(b\), thus we have the following upper bound of \(H_3(U, V)\):

\[
\sum_{(U,V)} H_3(U, V) \leq 2|A|^2 q^{\frac{d^2}{2}} - \frac{q}{4},
\]

where the sum is over all directions. It follows from Lemma 4.2 that the number of homomorphisms from \(P_4\) to \(G_{U,V}\) is at least \(2|A|^3/q^d\). Thus, we obtain

\[
H_4(U, V) \geq \frac{2|A|^3}{q^d} - H_2(U, V) - H_3(U, V).
\]

It follows from Lemma 4.1 that the number of directions is at least \((1 - o(1))q^{d/4}\). Hence,

\[
\sum_{(U,V)} H_4(U, V) \geq \sum_{(U,V)} \frac{2|A|^3}{q^d} - \sum_{(U,V)} H_2(U, V) - \sum_{(U,V)} H_3(U, V) \\
\geq (1 - o(1))q^{\frac{d^2}{2}-d}|A|^3 - (1 - o(1))q^{\frac{d^2}{2}}|A| - 2|A|^2 q^{\frac{d^2}{2}} - \frac{q}{4}.
\]

(4)

We note that, in the sum \(\sum_{(U,V)} H_4(U, V)\), each right angle determined by \(A\) is counted at most \(q^{\left(\frac{d}{2}-1\right)^2}\) times. Therefore, the number of right angles in \(A\) is at least

\[
\frac{1}{2} \left((1 - o(1)) \frac{2|A|^3}{q} - (1 - o(1))q^{d-1}|A| - q^{d-1}|A|^2 \right) = (1 - o(1)) \frac{|A|^3}{q},
\]

when \(q^{d/2} = o(|A|)\), which concludes the proof of Theorem 1.3 (ii). Note that it also follows from our arguments that if \(|A| \geq 3q^{d/2}\), then the number of right angles is at least \(c \frac{|A|^3}{q}\) for some positive constant \(c\). This concludes the proof of Theorem 1.3 (i). □

5 Proof of Theorem 1.5

Let \(G = (V, E)\) be a \(d\)-regular graph with \(n\) vertices \(v_1, \ldots, v_n\). Suppose that the second largest eigenvalue of \(G\) is at most \(\gamma\). Let \(U\) be a multi-set of vertices in \(G\), i.e. some elements in \(U\) occur more than one time. For \(u \in U\), we denote its multiplicity in \(U\) by \(m_U(u)\). Let \(X_U = (x_1, \ldots, x_n)\) be the characteristic vector of \(U\), i.e. \(x_i = m_U(v_i)\). For any two multi-sets of vertices \(U\) and \(W\) in \(G\), it is clear that the number of edges between \(U\) and \(W\), denoted by \(e(U, W)\), is \(X_U^T MY_W\), where \(M\) is the adjacency matrix of \(G\). It has been shown that the number of edges between \(U\) and \(W\) satisfies the following estimate:

\[
\left| e(U, W) - \frac{d|U||W|}{n} \right| \leq \gamma \sqrt{\sum_{u \in U} m_U(u)^2} \sqrt{\sum_{w \in W} m_W(w)^2}.
\]

(5)

This estimate can be proved easily by using elementary results from linear algebra, one can find a detailed proof in [15].
Proof of Theorem 1.5: Let \(U' \) be the multi-set of classes
\[
[p_{a,b}] := [(a_1 - b_1, \ldots, a_d - b_d, -(a - b) \cdot b)] \in PG(q, d + 1),
\]
where \(a \) and \(b \) are distinct points in \(A \), and \(V \) be the set of classes \([p_x] := [(x_1, \ldots, x_d, 1)] \in PG(q, d + 1) \) with \((x_1, \ldots, x_d) \in A \).

Let \(t \) be the number of triples \((a, b, c) \in A \times A \times A\) satisfying \((a - b) \cdot (c - b) = 0\) and \(a \neq b \). Note that \(t \) is more than the number of right angles determined by \(A \) since we allow \(c = b \) or \(c = a \).

It follows from Theorem 1.5 that the number of right angles in \(A \) is at least \((1 - o(1))|A|^3/q\), thus it suffices to prove that \(t \leq (1 - o(1))|A|^3/q \).

On the other hand, it is clear that \(t \) is equal to the number of edges between \(U' \) and \(V \) in the Erdős-Rényi graph \(\mathcal{E}R(\mathbb{F}_q^{d+1}) \). Thus it follows from (5) and Theorem 2.2 that
\[
\left| t - \frac{(q^d - 1)|V| \sum_{[y] \in U'} m_{U'}([y])}{(q^d - 1)} \right| \leq q^{(d-1)/2} \sqrt{|V|} \left(\sum_{[y] \in U'} m_{U'}([y])^2 \right)^{1/2}.
\]

Moreover, as observed in the proof of Theorem 3.1, we have that \([p_{a,b}] = [p_{c,e}] \) implies that \((a - b) \cdot (e - b) = 0\). Thus for each triple \((a, b, e) \) with \(a \neq b \) satisfying \((a - b) \cdot (e - b) = 0\), there are at most \(q \) points \(c \) such that \([p_{a,b}] = [p_{c,e}] \). Therefore the upper bound of \(\sum_{[y]: m_{U'}([y]) \geq 1} m_{U'}([y])^2 \) is \(tq \). Since the number of points in \(U' \) with multiplicity 1 is at most \(|A|^2\) and \(t \geq (1 - o(1))|A|^3/q \) from the theorem 3.1 we obtain
\[
\sum_{[y] \in U'} m_{U'}([y])^2 \leq |A|^2 + tq = (1 + o(1))tq.
\]

Plugging this upper bound in the inequality (6), we get the following
\[
\left| t - \frac{(q^d - 1)|V| \sum_{[y] \in U'} m_{U'}([y])}{(q^d - 1)} \right| \leq (1 + o(1))q^{(d-1)/2} \sqrt{|V|} (tq)^{1/2} = (1 + o(1))q^{d/2} |V|^{1/2} t^{1/2}
\]

Solving this inequality gives us
\[
t \leq (1 - o(1)) \frac{|A|^3}{q},
\]
under the condition \(q^{d+1} = o(|A|) \).

In other words, if \(q^{d+1} = O(|A|) \), then the number of right angles in \(A \) is bounded from above by \((1 - o(1))|A|^3/q\). This completes the proof of the theorem. \(\square\)

References

Hanoi University of Science
Vietnam National University
Viet Nam
E-mail: sangnmkhtnvn@gmail.com

Department of Mathematics,
EPF Lausanne
Switzerland
E-mail: thang.pham@epfl.ch

Rényi Institute, Budapest,
Hungary
E-mail: tardos@renyi.hu