1. An n by n matrix with entries from $\{1, 2 \ldots n\}$ is called a Latin square, if every element of $\{1, 2 \ldots n\}$ appears exactly once in each column, and exactly once in each row. Recast the problem of constructing Latin squares as a coloring problem.

2. By an outerplanar graph we understand a planar graph having all the vertices on the outer face.

Show that the chromatic number of an outerplanar graph is at most three.

3. Let G denote a graph that contains a cycle. Show that $\chi(G) = \max_{C \in C(G)} \chi(C)$, where $C(G)$ is the set consisting of the vertex two-connected components (subgraphs) in G.

4. Let k denote a natural number. Describe a construction of a triangle-free graph with chromatic number k.

Hint: Let $G = (V, E)$ denote a graph. Let $V_0 = \{u' | u \in V\}$, so that $V_0 \cap V = \emptyset$ (think of V_0 as of a copy of V). Using G we construct the graph $G' = (V', E')$ as follows: $V' = V \cup V_0 \cup \{z\}$, $z \notin V \cup V_0$, $E' = E \cup \{u'v | uv \in E\} \cup \{zu' | u' \in V_0\}$. Show that $\chi(G') = \chi(G) + 1$.

5. We define the line graph $G' = (E, E')$ of G to be the graph whose vertex set is simply the edge set of G and two vertices in G' are joined by an edge if their corresponding edges in G share a vertex. More formally, $ef \in E'$ if there exists $u, v, w \in V$ such that $e = uv$ and $f = uw$.

Prove that the line graph of K^n has chromatic number either $n - 1$ or n.

Prove that for odd n the answer is n, and for even n the answer is $n - 1$.

6. * Prove that you can color the integer lattice \mathbb{Z}^2 with 4 colors, such that for any two points $u, v \in \mathbb{Z}^2$ that can see each other (i.e. the interior of the segment \overline{uv} does not contain a point from \mathbb{Z}^2) have distinct colors.