Graph Theory: Problem set 5

March 20, 2011

1. Let \(\kappa(G) \) denote the minimum size of a vertex set \(S \) such that \(G - S \) is disconnected or contains only 1 vertex. Let \(\kappa'(G) \) denote the minimum size of an edge set \(T \) such that \(G - T \) has more than one component. Show that

\[
\kappa(G) \leq \kappa'(G) \leq \delta(G)
\]

where \(\delta(G) \) denotes the minimum degree of \(G \).

2. If \(G \) is a 3-regular graph, then show that \(\kappa(G) = \kappa'(G) \).

3. Show that every planar graph with \(n \) vertices which has no triangular face has at most \(2n - 4 \) edges.

4. Let us denote by \(v_i \) the number of degree \(i \) vertices in a planar graph \(G \) on at least 3 vertices. Prove the following inequality

\[
12 \leq \sum_{i=1}^{\infty} (6 - i)v_i.
\]

5. Show that the following are equivalent for a plane graph \(G \).

(a) \(G \) is bipartite.
(b) Every face has even length.
(c) the dual graph \(G^* \) is Eulerian.

6. * Let \(G \) be a plane graph on \(n \) vertices, which has no face shorter than 4 and no two faces of length at most 5 that share an edge. Prove that \(G \) can have at most \(\frac{12}{7}n \) edges.

7. We call the planar graph outerplanar if it can be embedded into \(\mathbb{R}^2 \) in a way that all of its vertices lie on the outer face.

Show that an outerplanar graph on \(n > 2 \) vertices can contain at most \(2n - 3 \) edges.