Graph theory - problem set 5

March 22, 2018

Exercises

1. Determine if the following graphs are planar or not.

2. Determine all positive integers r and s for which $K_{r,s}$ is planar.

3. Let G be a graph on n vertices and $3n - 6 + k$ edges for some $k > 0$. Then any drawing of G in the plane contains at least k crossing pairs of edges.

4. Let G be a planar graph with fewer than 12 vertices. Show that G has a vertex of degree at most 4.

Problems

5. Show, using Euler’s formula, that if G is a planar graph on n vertices that has finite girth g, then G has at most $\frac{g}{2-2}(n-2)$ edges. Deduce that the Petersen graph is not planar.

6. (a) Let G be a planar graph containing no triangles. Show that $\chi(G) \leq 4$.

 (b) Let G be a planar graph containing at most three triangles. Show that $\chi(G) \leq 4$.

7. Prove that for any three vertices x, y, z of a planar graph on n vertices, the sum of the degrees $d(x) + d(y) + d(z)$ is at most $2n + 2$.

8. Let S be a set of n points in the plane such that any two of them have distance at least 1. Show that there are at most $3n - 6$ pairs of distance exactly 1.

 [Hint: utilauqeni elgnairt eht gnissu gnissorc on sah hparg eht evorP]

9. Show that every graph can be embedded (drawn) in \mathbb{R}^3 with straight-line edges.

10. Let G be a plane graph with triangular faces, and suppose the vertices are colored arbitrarily with three colors. Prove that there is an even number of triangles that get all three colors.