Exercises

1. Let T be a tree and e be an edge of T. Prove that $T - e$ is not connected.

2. Let T be a tree and let u and v be two non-adjacent vertices of T. Prove that $T + uv$ contains a unique cycle.

3. Show that a graph is connected if and only if it contains a spanning tree.

4. Prove that a forest on n vertices with c connected components has exactly $n - c$ edges.

5. Find a maximum matching in the following graph.

6. As we have seen in class, if G is a bipartite graph and M is a matching in G that is not maximum (i.e. G contains a larger matching) then the graph contains an augmenting path. Is this always true if G is not bipartite?

Problems

7. Let T be a tree on n vertices that has no vertex of degree 2. Show that T has more than $n/2$ leaves.

8. Show that every tree T has at least $\Delta(T)$ leaves.

9. Prove that in a tree, there is at most one perfect matching.

10. Show that a graph G contains at least $|E(G)| - |V(G)| + 1$ cycles.

11. Let T be an n-vertex tree that has exactly $2k$ vertices of odd degree. Show that T can be split into k edge-disjoint paths (i.e., T is the union of k edge-disjoint paths).

12. Let T be a tree on t vertices and suppose G is a graph with $\delta(G) \geq t - 1$. Show that $T \subseteq G$, i.e., G has a subgraph isomorphic to T.

13. Prove that a connected graph G is a tree if and only if any three pairwise (vertex-)intersecting paths in G have a common vertex.