Graph theory - problem set 10

May 4, 2017

Exercises

1. Determine the chromatic number of the first graph and the edge-chromatic number of the second graph below.

2. Let G be a graph on V, and let $G[X]$ be the subgraph induced by $X \subseteq V$ (i.e. the graph with vertex set X containing the edges of G with both endpoints in V). Prove that $\chi(G) \leq \chi(G[X]) + \chi(G[V \setminus X])$.

3. Are the following statements true?
 (a) If G and H are graphs on the same vertex set, then $\chi(G \cup H) \leq \chi(G) + \chi(H)$.
 (b) Every graph G has a coloring with $\chi(G)$ colors where $\alpha(G)$ vertices get the same color.

4. (a) A fair coin is tossed 100 times. What is the expected number of tails? (A fair coin comes up heads or tails with probability 1/2 each.)
 (b) A fair die is thrown 5 times. Let X be the sum of the 5 obtained values. What is bigger, $P(X \leq 5)$ or $P(X \geq 30)$? (A fair die has 6 faces with values 1,...,6 obtained with equal probability.)
 (c) A fair die is thrown 2 times. Calculate the probability that the sum of the values is odd.

Problems

5. Let G be a graph such that $\chi(G - x - y) = \chi(G) - 2$ for all pairs of distinct vertices $x, y \in V(G)$. Prove that G is the complete graph.

6. (a) Find the edge-chromatic number of K_{2n+1} (don’t use Vizing’s theorem).
 (b) Find the edge-chromatic number of K_{2n}.

7. Let G be a graph on n vertices and \overline{G} be its complement. Prove that
 (a) $\chi(G)\chi(\overline{G}) \geq n$.
 (b) $\chi(G) + \chi(\overline{G}) \leq n + 1$.

8. Let $G = (A, B; E)$ be bipartite with maximum degree Δ. Prove that $\chi_e(G) = \Delta$.
 Remark: This theorem of König strengthens Vizing’s theorem for bipartite graphs.