1. Prove that a graph is bipartite if and only if it does not contain a cycle of odd length.

2. Prove the following asymmetric case of Hall’s theorem: If G is a bipartite graph with bipartition (A, B), such that, for any subset X of A we have $|N(X)| \geq |X|$, then there is a matching of size $|A|$ in G. We have denoted by $N(X)$ the neighborhood of X in B, that is, the set of all vertices in B adjacent to some vertex of X.

3. Prove that if n is odd, $k = \lfloor n/2 \rfloor$, then there is a one-to-one correspondence between all k-element subsets and all $k+1$-element subsets of an n-element set such that every k-element set is contained in the corresponding $k+1$-element set.

4. Let G is a bipartite graph with bipartition (A, B), such that $|A| = |B| = n$. Prove that there exist a matching of size t in G if and only if for any subset Y of A, we have $|N(Y)| \geq |Y| + t - n$, where we have denoted by $N(Y)$ the neighborhood of Y in B.

5. A graph is called regular if the degrees of all vertices are equal. Prove that every regular bipartite graph with $2n$ vertices (n in each part) of degree at least 1 has a matching of size n.

6*. Mr.Bean wants to type all the integer numbers from 1 to 999999 in ascending order. Since the keys 4 and 9 from his keyboard are missing, he does not type the numbers containing these digits. What will be the 2014-th numbered typed?