Discrete mathematics - problem set 3

October 1, 2015.

1. What is the number of into (that is, injective) maps from a set of \(n \) elements to a set of \(m \) elements, where \(m \geq n \)?

2. There are \(n \) married couples attending a dance. How many ways are there to form \(n \) pairs for dancing if no wife should dance with her husband?

3. (a) Determine the number of permutations with exactly one fixed point.
 (b) Count the permutations with exactly \(k \) fixed points.

4. Which set of dominoes has larger cardinality:
 - dominoes containing numbers from 0 to 8 and admitting doubles (that means, any number can appear twice on the same domino piece) or
 - dominoes containing numbers from 0 to 9 without doubles (the two numbers appearing on the same domino piece must be distinct).

5. How many positive integers are there that divide \(10^{40} \) or \(20^{30} \)?

6. How many positive integers less or equal than 385 are there such that they are not divisible by neither of the following numbers: 5, 7, 11?

7. Prove that every tree with a vertex of degree \(n \) has at least \(n \) vertices of degree one.

8. Prove that \(\sum_{d|n} \phi(d) = n \) for every natural number \(n \), where the sum is taken over all natural numbers \(d \) dividing \(n \).

9 *. Can one place 28 points inside the cube of side length 3 in \(\mathbb{R}^3 \) such that the distance between any two points is at least 1.75? Justify your answer.