Paths in pseudorandom graphs and applications

Thang Pham∗ Le Anh Vinh†

Abstract
Let $G = (V,E)$ be an (n,d,λ)-graph. In this paper, we give an asymptotically tight condition on the size of $U \subset V$ such that the number of paths of length k in U is close to the expected number for arbitrary integer $k \geq 1$. More precisely, we will show that if $\lambda(n^2d) = o(|U|)$, then the number of paths of length k in U is $(1 + o(1))|U|^k |\frac{d}{n}|^k$. As applications, we obtain improvements and generalizations of recent results due to Bennett, Chapman, Covert, Hart, Iosevich, Pakianathan (2016).

1 Introduction
Let $G = G(n,p)$ be a random graph. For a fixed graph H with $s \leq n$ vertices, r edges, and automorphism group $\text{Aut}(H)$, it is well-known that the number of induced copies of H in G is

$$(1 + o(1))p^r (1 - p)^{\binom{s}{2} - r} \frac{n^s}{|\text{Aut}(H)|}.$$

For a graph G, let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ be the eigenvalues of its adjacency matrix. The quantity $\lambda(G) = \max\{\lambda_2, -\lambda_n\}$ is called the second eigenvalue of G. A graph $G = (V,E)$ is called an (n,d,λ)-graph if it is d-regular, has n vertices, and the second eigenvalue of G is at most λ. It is well known that if λ is much smaller than the degree d, then G has certain random-like properties. Noga Alon [11] proved that every large subset of vertices in (n,d,λ)-graphs contains the “correct” number of copies of any fixed graph.

Theorem 1.1 (Alon, Theorem 4.10 [11]). Let H be a fixed graph with r edges, s vertices, and maximum degree Δ, and let $G = (V,E)$ be an (n,d,λ)-graph where $d \leq 0.9n$. Let $m < n$ satisfy $\lambda(n/d)^\Delta = o(m)$. Then, for every subset $U \subset V$ of cardinality m, the number of (not necessarily induced) copies of H in U is

$$(1 + o(1)) \frac{|U|^s}{|\text{Aut}(H)|} \left(\frac{d}{n}\right)^r.$$

Note that if we take the ordering of vertex set into account in Theorem 1.1 then the number of copies of H in U is $(1 + o(1))|U|^s (d/n)^r$. In the case H is a complete bipartite graph $K_{s,t}$, it has been shown by the second listed author [15] that the conditions on d and λ in Theorem 1.1 can be improved. Before presenting that result, we first need the following notations. Let $G \times G$ be the bipartite graph with two vertex parts $V(G)$ and $V(G)$. Two vertices u and v in different parts are connected by an edge if they are adjacent in G. For any two subsets $U_1, U_2 \subset V(G)$, let $G[U_1, U_2]$ be the induced bipartite subgraph of $G \times G$ on $U_1 \times U_2$.

*Department of Mathematics, EPFL, Lausanne, Switzerland. Email: thang.pham@epfl.ch
†University of Education, Vietnam National University. Email: vinhla@vnu.edu.vn
Theorem 1.2 (Theorem 2.2, [15]). For any \(t \geq s \) and \(t \geq 2 \), let \(G = (V, E) \) be an \((n, d, \lambda)\)-graph. For every subsets \(U_1, U_2 \subseteq V \) with
\[
|U_1| |U_2| \geq \lambda^2 (n/d)^{t+s},
\]
the induced subgraph \(G[U_1, U_2] \) contains
\[
(1 + o(1)) \frac{|U_1|^s |U_2|^t}{s!t!} \left(\frac{d}{n} \right)^{st}
\]
copies of \(K_{s,t} \).

When either \(s \) or \(t \) is very small, one can further improve the bound in Theorem 1.2, for instance, in the case \(s = 2 \) and \(t \geq 1 \), the author of [15] indicated that under the condition \(|U_1||U_2| \geq \lambda^2 (n/d)^{t+1}\), the induced subgraph \(G[U_1, U_2]\) contains \((1 + o(1)) \frac{|U_1|^s |U_2|^t}{2!t!} \left(\frac{d}{n} \right)^{st}\) copies of \(K_{2,t} \).

Suppose \(U \) is set of vertices in an \((n, d, \lambda)\)-graph \(G \), and \(H \) is a path of length \(k \). It follows from Theorem 1.1 that if \(\lambda(n/d)^2 = o(|U|) \), then the number of copies of \(H \) in \(U \) is
\[
(1 + o(1)) |U|^{k+1} \left(\frac{d}{n} \right)^k.
\]
Our main purpose of this paper is to give an asymptotically tight condition on the size of \(U \subseteq V \) such that the number of paths of length \(k \) in \(U \) is close to the expected number for arbitrary \(k \geq 1 \). As applications, we obtain improvements and generalizations of results in [5]. Our first main result is as follows.

Theorem 1.3. Let \(G = (V, E) \) be an \((n, d, \lambda)\) graph. Suppose that \(U \subseteq V \) with \(\lambda \left(\frac{n}{d} \right) = o(|U|) \). For an integer \(k \geq 1 \), let \(P_k(U) \) be the number of paths of length \(k \) in \(U \), i.e.
\[
P_k(U) = \# \left\{ (u_1, \ldots, u_{k+1}) \in U^{k+1} : u_iu_{i+1} \in E(G), 1 \leq i \leq k \right\}.
\]
Then we have
\[
P_k(U) = (1 + o(1)) |U|^{k+1} \left(\frac{d}{n} \right)^k.
\]

On the sharpness of Theorem 1.3, we have the following.

Theorem 1.4. There exist an \((n, d, \lambda)\)-graph \(G \) and a set \(U \) of vertices with \(|U| = c\lambda \left(\frac{n}{d} \right)\) for some \(0 < c < 1 \) such that \(P_k(U) = 0 \) for arbitrary \(k \geq 1 \).

We say that a path \((u_1, \ldots, u_{k+1}) \in U^{k+1}\) of length \(k \) is non-overlapping if \(u_i \neq u_j \) for all \(i \neq j \). For a set \(U \) of vertices in an \((n, d, \lambda)\)-graph \(G \), let \(D_k(U) \) be the number of non-overlapping paths of length \(k \) in \(U \), i.e.
\[
D_k(U) = \# \left\{ (u_1, \ldots, u_{k+1}) \in U^{k+1} : u_iu_{i+1} \in E(G), 1 \leq i \leq k, u_i \neq u_j, \forall i \neq j \right\}.
\]
In the following theorem, we show that under similar conditions on the size of \(U \), the number of non-overlapping paths of length \(k \) in \(U \) is \((1 - o(1)) |U|^{k+1} \left(\frac{d}{n} \right)^k\).
Theorem 1.5. Let \(G = (V, E) \) be an \((n,d,\lambda)\) graph. Suppose that \(U \subseteq V \) with \(\lambda \left(\frac{n}{d} \right) = o(|U|) \) and \(k \left(\frac{n}{d} \right) = o(|U|) \), then we have

\[
D_k(U) = (1 - o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]

Note that our results could be stated in multi-color versions, which will be useful for our later applications. Suppose that a graph \(G \) is edge-colored by a set of finite colors. We say that \(G \) is an \((n,d,\lambda)\)-colored graph if the subgraph of \(G \) on each color is an \((n, (1 + o(1))d, \lambda)\)-graph. The following are multi-color versions of Theorem 1.3 and Theorem 1.5.

Theorem 1.6. Let \(G = (V, E) \) be an \((n,d,\lambda)\)-colored graph. For a sequence \(c = (c_1, \ldots, c_k) \) of \(k \) colors, and \(U \subseteq V \), we define

\[
P^c_k(U) = \# \left\{ (u_1, \ldots, u_{k+1}) \in U^{k+1} : \text{the edge } u_iu_{i+1} \text{ is colored by } c_i, 1 \leq i \leq k \right\}.
\]

If \(U \) satisfies \(\lambda \left(\frac{n}{d} \right) = o(|U|) \), then we have

\[
P^c_k(U) = (1 + o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]

Theorem 1.7. Let \(G = (V, E) \) be an \((n,d,\lambda)\)-colored graph. For a sequence \(c = (c_1, \ldots, c_k) \) of \(k \) colors, and \(U \subseteq V \), we define

\[
D^c_k(U) = \# \left\{ (u_1, \ldots, u_{k+1}) \in P^c_k(U) : u_i \neq u_j \forall i \neq j \right\}.
\]

If \(U \) satisfies \(\lambda \left(\frac{n}{d} \right) = o(|U|) \) and \(k \left(\frac{n}{d} \right) = o(|U|) \), then we have

\[
D^c_k(U) = (1 + o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]

The proofs of Theorems 1.6 and 1.7 are similar to those of Theorems 1.3 and 1.5, respectively. To simplify the notation, we will only present the proofs of single-color results. Note that going from single-color formulations (Theorems 1.3 and 1.5) to multi-color formulations (Theorems 1.6 and 1.7) is just a matter of inserting different letters in a couple of places.

1.1 Applications

Let \(\mathbb{F}_q \) be a finite field of order \(q \), where \(q \) is an odd prime power. We denote the set of units in \(\mathbb{F}_q \) by \(\mathbb{F}_q^* \). For any two points \(x = (x_1, \ldots, x_d) \) and \(y = (y_1, \ldots, y_d) \) in \(\mathbb{F}_q^d \), we define the distance between \(x \) and \(y \) by

\[
\|x - y\| = (x_1 - y_1)^2 + \cdots + (x_d - y_d)^2.
\]

Although it is not a norm, the function \(\|x - y\| \) has properties similar to the Euclidean norm (for example, it is invariant under orthogonal matrices and translations). The Erdős-Falconer distance problem asks for the minimum exponent \(\alpha \) such that for any set \(E \subseteq \mathbb{F}_q^d \) with \(|E| \gg q^\alpha \), the number of distinct distances determined by \(E \) is at least \(cq \) for some positive constant \(c \). Here and throughout, \(X \gg Y \) means that there exists \(C > 0 \) such that \(X \geq CY \). Bourgain, Katz, and Tao [3] considered a similar problem on the number of distinct distances determined
by a set of points in \mathbb{F}_q^2. Iosevich and Rudnev [9] proved that for any $E \subseteq \mathbb{F}_q^d$, if $|E| \geq 2q^{d+1}$, then all distances are determined by E. The authors of [7] indicated that the exponent $(d+1)/2$ is the best possible in odd dimensions. We refer the reader to [7] for more discussions.

Let E be a set in \mathbb{F}_q^d, $d \geq 2$, and $k \geq 1$ be an integer. Let $t = (t_1, \ldots, t_k) \in \mathbb{F}_q^k$ with $t_i \neq 0$, $1 \leq i \leq k$, we define

$$P_k^t(E) = |\{(p_1, \ldots, p_{k+1}) \in E \times \cdots \times E : ||p_i - p_{i+1}|| = t_i, 1 \leq i \leq k\}|$$

as the number of paths of length k in E with given distances $(t_1, \ldots, t_k) \in \mathbb{F}_q^k$. In the case $k = 1$, we have $P_1^t(E)$ is the number of pairs $(x, y) \in E^2$ of distance t_1. In a recent work, Bennett, Chapman, Covert, Hart, Iosevich and Pakianathan [5], using Fourier analytic techniques, studied the magnitude of $P_k^t(E)$ for arbitrary $k \geq 1$ as follows.

Theorem 1.8 (Bennett et al., [5]). For $E \subseteq \mathbb{F}_q^d$, $d \geq 2$ and an integer $k \geq 1$. Suppose that $\frac{2k}{m^2 q^{d+1}} = o(|E|)$ then we have

$$P_k^t(E) = (1 + o(1)) \frac{|E|^{k+1}}{q^k}.$$

As a consequence of Theorem 1.8, the authors of [5] indicated that under the same condition as in Theorem 1.8, there exist non-overlapping paths of length k in E with arbitrary $k \geq 1$. The precise statement is as follows.

Theorem 1.9 (Bennett et al., [5]). Let E be a set in \mathbb{F}_q^d, $d \geq 2$, and $k \geq 1$ be an integer. Let $t = (t_1, \ldots, t_k)$ with $t_i \neq 0$; $1 \leq i \leq k$, we define

$$D_k^t(E) = |\{(p_1, \ldots, p_{k+1}) \in E \times \cdots \times E : ||p_i - p_{i+1}|| = t_i, 1 \leq i \leq k; p_i \neq p_j, \forall i \neq j\}|.$$

Suppose that $|E| \geq \frac{2k}{m^2 q^{d+1}}$ then we have $D_k^t(E) > 0$.

Note that in the case $k = 1$, Theorem 1.9 implies the main result in [9]. In this section, we will present some improvements and generalizations of Theorems 1.8 and 1.9.

The finite Euclidean distance graphs: For a non-degenerate quadratic form Q on \mathbb{F}_q^d, and $a \in \mathbb{F}_q^*$, the finite Euclidean distance graph $E_q(d, Q, a)$ is defined as follows:

$$V(E_q(d, Q, a)) = \mathbb{F}_q^d, \quad E(E_q(d, Q, a)) = \{(x, y) \in V \times V : Q(x - y) = a\}$$

The (n, d, λ)-form of $E_q(d, Q, a)$ has been studied in [2, 12] as follows.

Theorem 1.10 ([2, 12]). Let Q be a non-degenerate quadratic form on \mathbb{F}_q^d. For any $a \in \mathbb{F}_q \setminus \{0\}$, the graph $E_q(d, Q, a)$ is an

$$(q^d, (1 + o(1))q^{d-1}, 2q^{(d-1)/2})$$

graph.

Let G be a graph with the vertex set \mathbb{F}_q^d, and the edge between two vertices x and y are colored by the color a if and only if $Q(x - y) = a$. Theorem 1.10 implies that the graph G is a $(q^d, (1 + o(1))q^{d-1}, 2q^{(d-1)/2})$-colored graph with $(q - 1)$ colors. Thus as consequences of Theorems 1.6 and 1.7, we are able to improve Theorems 1.8 and 1.9 as follows.
Theorem 1.11. Let \mathcal{E} be a set in $\mathbb{F}_q^d, d \geq 2$, and $k \geq 1$ be an integer. Let $t = (t_1, \ldots, t_k)$ with $t_i \neq 0$, $1 \leq i \leq k$, we define

$$P_k^t(\mathcal{E}) = |\{(p_1, \ldots, p_{k+1}) \in \mathcal{E} \times \cdots \times \mathcal{E} : Q(p_i - p_{i+1}) = t_i, 1 \leq i \leq k\}|.$$

Suppose that $q^{\frac{d+1}{2}} = O(|\mathcal{E}|)$, then we have

$$P_k^t(\mathcal{E}) = (1 + O(1))\frac{|\mathcal{E}|^{k+1}}{q^k}.$$

Theorem 1.12. Let \mathcal{E} be a set in $\mathbb{F}_q^d, d \geq 2$, and $k \geq 1$ be an integer. Let $t = (t_1, \ldots, t_k)$ with $t_i \neq 0$, $1 \leq i \leq k$, we define

$$D_k^t(\mathcal{E}) = |\{(p_1, \ldots, p_{k+1}) \in \mathcal{E} \times \cdots \times \mathcal{E} : Q(p_i - p_{i+1}) = t_i, 1 \leq i \leq k, p_i \neq p_j, \forall i \neq j\}|.$$

Suppose that $kq = O(|\mathcal{E}|)$ and $q^{\frac{d+1}{2}} = O(|\mathcal{E}|)$, then we have

$$D_k^t(\mathcal{E}) = (1 + O(1))\frac{|\mathcal{E}|^{k+1}}{q^k}.$$

The finite upper half-plane graphs: For a finite field \mathbb{F}_q, the upper half plane on the finite field \mathbb{F}_q, which is denoted by H_q, is defined as

$$H_q = \{z = x + y\sqrt{\sigma} : x, y \in \mathbb{F}_q \text{ and } y \neq 0\},$$

where σ is a non-square in \mathbb{F}_q. For any two points $z = u + v\sqrt{\sigma}$ and $w = x + y\sqrt{\sigma}$ in H_q, the distance between two points is

$$d(z, w) = \frac{(u - x)^2 - \sigma(v - y)^2}{vy}.$$

This distance is not a metric in the sense of analysis, but it is $GL(2, \mathbb{F}_q)$-invariant: $d(gz, gw) = d(z, w)$ for all $g \in GL(2, \mathbb{F}_q)$ and all $z, w \in H_q$.

For $a \in \mathbb{F}_q \setminus \{0, 4\sigma\}$, the finite upper half-plane graph $P(\sigma, a)$ is defined as follows: $V(P(\sigma, a)) = H_q \cup \{(z, w) \in E(P(\sigma, a)) \text{ if } d(z, w) = a\}$. The (n, d, λ)-form of $P(\sigma, a)$ has been established by Terras in [14].

Theorem 1.13 ([14]). For $a \in \mathbb{F}_q \setminus \{0, 4\sigma\}$, the finite upper half-plane graph $P(\sigma, a)$ is

$$\left(q^2 - q, q + 1, 2q^{1/2}\right) \text{-graph.}$$

Similarly, let G be a graph with the vertex set H_q, and the edge between two vertices z and w are colored by the color a with $a \neq 0, 4\sigma$ if and only if $d(z, w) = a$. Theorem 1.13 implies that the graph G is a $(q^2 - q, q + 1, 2q^{1/2})$-colored graph with $(q - 2)$ colors. Therefore, as a consequence of Theorem 1.6, we have the following result.

Theorem 1.14. Let \mathcal{E} be a set in H_q, and $k \geq 1$ be an integer. Let $t = (t_1, \ldots, t_k)$ with $t_i \neq 0$, $1 \leq i \leq k$, we define

$$P_k^t(\mathcal{E}) = |\{(p_1, \ldots, p_{k+1}) \in \mathcal{E} \times \cdots \times \mathcal{E} : d(p_i, p_{i+1}) = t_i, 1 \leq i \leq k\}|.$$

Suppose that $q^\frac{d}{2} = o(|\mathcal{E}|)$, then we have

$$P_k^t(\mathcal{E}) = (1 + O(1))\frac{|\mathcal{E}|^{k+1}}{q^k}.$$
2 Proofs of Theorems 1.3–1.5

To prove Theorems 1.3 and 1.5, we will need to use the following lemma.

Lemma 2.1 (Chapter 9, [1]). Let \(G = (V, E) \) be an \((n, d, \lambda)\)-graph. For any two sets \(B, C \subseteq V \), the number of edges between \(B \) and \(C \) in \(G \), which is denoted by \(e(B, C) \), satisfies

\[
|e(B, C) - \frac{|B||C|}{n}| \leq \lambda \sqrt{|B||C|}.
\]

Suppose that \(B \) and \(C \) are two multi-sets of vertices in an \((n, d, \lambda)\)-graph. Let \(m_X(x) \) denote the multiplicity of \(x \) in \(X \), and \(e_m(B, C) \) be the number of edges with multiplicity between \(B \) and \(C \) in \(G \), by multiplicity we mean that if there is an edge between \(b \in B \) and \(c \in C \), then this edge will be counted \(m_B(b) \cdot m_C(c) \) times in \(e_m(B, C) \). For a multi-set \(X \), we still use the notation \(|X|\) for the cardinality of \(X \) which is the sum \(\sum_{x \in X} m_X(x) \). Recently, Hanson et al. [8] gave the following estimate on \(e_m(B, C) \) in an \((n, d, \lambda)\)-graph.

Lemma 2.2 ([8]). Let \(G = (V, E) \) be an \((n, d, \lambda)\)-graph. The number of edges between two multi-sets of vertices \(B \) and \(C \) in \(G \) satisfies:

\[
|e_m(B, C) - \frac{|B||C|}{n}| \leq \lambda \sqrt{\sum_{b \in B} m_B(b)^2 \sqrt{\sum_{c \in C} m_C(c)^2}},
\]

where \(m_X(x) \) is the multiplicity of \(x \) in \(X \).

As a consequence of Lemma 2.2, we obtain the following recurrence relation between paths in \(U \).

Lemma 2.3. Let \(G \) be an \((n, d, \lambda)\)-graph. For a subset \(U \) of vertices, let \(P_k(U) \) be the number of paths of length \(k \) with vertices in \(U \). Then we have the following

\[
\bigg| P_{2k+1}(U) - \frac{dP_k(U)^2}{n} \bigg| \leq \lambda P_{2k}(U), \quad \bigg| P_{2k}(U) - \frac{dP_k(U)P_{k-1}(U)}{n} \bigg| \leq \lambda \sqrt{P_{2k}(U)P_{2k-2}(U)}.
\]

Proof. Let \(B \) and \(C \) be multi-sets defined as follows:

\[
B = \{v_{k+1}: (u_1, \ldots, u_{k+1}) \text{ is a path of length } k \text{ in } U\},
\]

\[
C = \{v_{k+2}: (u_{k+2}, \ldots, v_{k+2}) \text{ is a path of length } k \text{ in } U\}.
\]

One can check that \(P_{2k+1} \) is equal to the number of edges between \(B \) and \(C \) in the graph \(G \). Thus it follows from Lemma 2.2 that

\[
\bigg| P_{2k+1}(U) - \frac{dP_k(U)^2}{n} \bigg| \leq \lambda \sqrt{\sum_{b \in B} m_B(b)^2 \sqrt{\sum_{c \in C} m_C(c)^2}}.
\]

It is easy to see that \(\sum_{b \in B} m_B(b)^2 = \sum_{c \in C} m_C(c)^2 = P_{2k}(U) \). This implies that

\[
\bigg| P_{2k+1}(U) - \frac{dP_k(U)^2}{n} \bigg| \leq \lambda P_{2k}(U).
\]

By using the same arguments, we obtain

\[
\bigg| P_{2k}(U) - \frac{dP_k(U)P_{k-1}(U)}{n} \bigg| \leq \lambda \sqrt{P_{2k}(U)P_{2k-2}(U)},
\]

which completes the proof of the lemma. \(\Box \)
We will prove Theorem 1.3 by using induction on \(k \), so we need the following theorems for the base cases \(k = 1 \) and \(k = 2 \).

Theorem 2.4. Let \(G = (V, E) \) be an \((n, d, \lambda)\) graph. Suppose that \(U \subseteq V \) with \(\lambda \left(\frac{n}{d} \right) = o(|U|) \), then the number of paths of length one in \(U \) is \((1 + o(1))|U|^2 \frac{d}{n} \).

Proof. The number of paths of length one is the number of edges between \(U \) and \(U \) in \(G \). Thus the theorem follows directly from Lemma 2.1.

Theorem 2.5 (Theorem 3.3, [16]). Let \(G = (V, E) \) be an \((n, d, \lambda)\) graph. Suppose that \(U \subseteq V \) with \(\lambda \left(\frac{n}{d} \right) = o(|U|) \), then the number of paths of length two in \(U \) is \((1 + o(1))|U|^3 \left(\frac{d}{n} \right)^2 \).

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: We first prove the upper bound of Theorem 1.3 by induction on \(k \). The base cases \(k = 1 \) and \(k = 2 \) follow from Theorems 2.4 and 2.5. Suppose that the statement holds for all \(2k \geq 1 \). We now show that it also holds for \(2k + 1 \) and \(2k + 2 \). Indeed, it follows from Lemma 2.3 and induction hypothesis that

\[
P_{2k+1}(U) \leq \frac{d}{n} P_k(U)^2 + \lambda P_{2k}(U) \leq (1 + o(1)) \left(\frac{d}{n} \right)^{2k+1} |U|^{2k+2} + (1 + o(1)) \lambda \left(\frac{d}{n} \right)^{2k} |U|^{2k+1}
\]

when \(\lambda \left(\frac{n}{d} \right) = o(|U|) \).

For the case \(2k + 2 \), it also follows from Lemma 2.3 that

\[
P_{2k+2}(U) \leq \frac{dP_k(U) P_{k+1}(U)}{n} + \lambda \sqrt{P_{2k}(U) P_{2k+2}(U)}.
\]

Solving this inequality in \(x = \sqrt{P_{2k+2}} \), we obtain

\[
P_{2k+2}(U) \leq \left(\lambda \sqrt{P_{2k}(U)} + \left(\frac{dP_k(U) P_{k+1}(U)}{n} \right)^{1/2} \right)^2.
\]

By using the induction hypothesis, we have

\[
P_{2k+2}(U) \leq (1 + o(1)) \left(\frac{d}{n} \right)^{2k+2} |U|^{2k+3}.
\]

In other words, we have proved that for all \(k \geq 1 \) and \(\lambda \left(\frac{n}{d} \right) = o(|U|) \)

\[
P_k(U) \leq (1 + o(1)) |U|^{k+1} \left(\frac{d}{n} \right)^k.
\]

By using the lower bounds of Lemma 2.3 and a nearly identical argument, we also obtain

\[
P_k(U) \geq (1 - o(1)) |U|^{k+1} \left(\frac{d}{n} \right)^k,
\]

under the condition \(\lambda \left(\frac{n}{d} \right) = o(|U|) \). This completes the proof of the theorem. \(\square \)
Proof of Theorem 1.4: Let \(d \geq 3 \) be an odd integer. From Theorem 1.10 we have that for any \(\lambda \in F_q^* \), the graph \(E_q(d, Q, \lambda) \) is an
\[
\left(q^d, (1 + o(1))q^{d-1}, 2q^{(d-1)/2} \right) \text{- graph.}
\]
Suppose \(Q(x) = x_1^2 + \cdots + x_q^2 \). It has been shown in [7, Theorem 2.7] that there exist a set \(U \subset F_q^d \) with \(|U| = c q^{(d+1)/2} = c \lambda n^{d/2} \) for some constant \(0 < c < 1 \) and \(\beta \in F_q^* \) such that there are no two points in \(U \) of distance \(\beta \). This implies that there is no path of length \(k \) with arbitrary \(k > 1 \) in \(U \) in the graph \(E_q(d, Q, \beta) \). \(\square \).

In the proof of Theorem 1.5, we will use ideas given in [5, Corollary 1.3].

Proof of Theorem 1.5: Since the upper bound of Theorem 1.5 follows from Theorem 1.3, it suffices to prove that
\[
D_k(U) \geq (1 - o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]
(2.1)
For \(u \in U \), let \(f_k(u) \) be the number of non-overlapping paths of length \(k \) in \(U \) beginning at \(u \in U \). Then we have
\[
D_k(U) = \sum_{u \in U} f_k(u).
\]
We now prove (2.1) by induction on \(k \). The base case \(k = 1 \) follows directly from Lemma 2.1. Suppose that the statement is true for all \(k - 1 \geq 1 \), we now show that it also holds for \(k \). Indeed, one can check easily that
\[
D_{k+1}(U) \geq \sum_{u \in U} f_k(u) (d_U(u) - k) = -kD_k(U) + \sum_{u \in U} f_k(u) d_U(u).
\]
(2.2)
On the other hand, by using the same arguments as in the proof of Lemma 2.3, we have
\[
\left| \sum_{u \in U} f_k(u) d_U(u) - \frac{d D_k(U)|U|}{n}\right| \leq \lambda |U|^{1/2} \sqrt{\sum_{u \in U} f_k(u)^2} \leq \lambda |U|^{1/2} \sqrt{P_{2k}(U)},
\]
where we use the estimate \(\sum_{u \in U} f_k(u)^2 \leq P_{2k}(U) \). This implies that
\[
\sum_{u \in U} f_k(u) d_U(u) \geq \frac{d D_k(U)|U|}{n} - \lambda |U|^{1/2} \sqrt{P_{2k}(U)} \geq \frac{d D_k(U)|U|}{n} - \lambda (1 + o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]
(2.3)
Putting (2.2) and (2.3) together gives us
\[
D_{k+1}(U) \geq \frac{D_k(U)|U|d}{n} - kD_k(U) - \lambda (1 + o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k.
\]
By using the induction hypothesis and the conditions \(\lambda \left(\frac{n}{d} \right) = o(|U|) \) and \(k \left(\frac{n}{d} \right) = o(|U|) \), we obtain
\[
D_{k+1}(U) \geq (1 - o(1))|U|^{k+1} \left(\frac{d}{n} \right)^k,
\]
which completes the proof of the theorem. \(\square \)
3 Concluding remarks

We conclude this paper with some remarks. Let $E_q(d, Q, a)$ be the finite Euclidean distance graph defined in the introduction. It follows from Theorem 1.1 that for $E \subset \mathbb{F}_q^d$, if $q^{\frac{d+3}{2}} = o(|E|)$ then E contains many copies of a fixed triangle. Note that Theorem 1.1 can also be stated for (n, d, λ)-colored graphs, and in this form we have that the number of congruence classes of triangles in E is $(1-o(1))q^3$ under the condition $q^{\frac{d+3}{2}} = o(|E|)$. However, this condition is only non-trivial when $d \geq 4$. If one can prove that under the same condition as in Theorem 1.3, i.e. $\lambda(n/d) = o(|E|)$, E contains many copies of a fixed triangle, then this will imply that in the case $d = 2$, we only need the condition $q^{3/2} = o(|E|)$ to get almost all of congruence classes of triangles, which matches Iosevich’s conjecture [10] and the construction in [4]. Thus we are led to the following conjecture.

Conjecture 3.1. Let $G = (V, E)$ be an (n, d, λ) graph. Suppose that $U \subseteq V$ with $\lambda \left(\frac{n}{d}\right) = o(|U|)$, then the number of copies of a fixed cycle C of length 3 in U is $(1 + o(1))|U|^3 (\frac{d}{n})^3$.

4 Acknowledgment

The first listed author was partially supported by Swiss National Science Foundation grants 200020-162884 and 200021-175977.

References

