Packing and covering
EPFL, 2014 Spring

12. Minkowski-Hlawka theorem

Remember that, given \(C \subset \mathbb{R}^d \) a convex, centrally symmetric body, we have denoted by \(\delta(C) \) - the maximal packing density of \(C \);
\(\vartheta(C) \) - the minimum covering density of \(C \).
Also remember that, during the exercise sessions, we have proved the following inequality
\[
\delta(C) \geq \frac{\vartheta(C)}{2^d} \geq \frac{1}{2d}.
\]

This provides a lower bound on the maximal packing density with respect to the minimum covering density. To prove this, we consider a saturated packing of \(C \) in the sense that we can add no more translates of \(C \), which is disjoint from the others. Let us denote this packing by \(C + C \). In this case, \(2C + C \) forms a covering of \(\mathbb{R}^d \). This can easily be proven by contradiction: suppose there exist an \(x \) not covered by the copies of \(2C \). That means, \(x \notin (2C + y) \).
On the other hand,
\[
(x + C) \cap (y + C) = \emptyset, \forall y \in C.
\]
From this, it follows that \(\exists c_1, c_2 \) such that \(x + c_1 = y + c_2 \) and thus \(x = y + (c_2 - c_1) \in 2C \) (remember that \(C \) is centrally symmetric). But this is a contradiction to the assumption above, which completes the proof.

Goal: We want now to extend this result to lattice packings. That means, we want to prove that there exist 'dense' lattice packings.

Remark. Let \(\Lambda \) be a lattice. Then, given that \(C \) is centrally symmetric, the following two propositions are equivalent:
(a) \(C + \Lambda \) is a packing;
(b) No lattice point apart from 0 is in \(2C \).

Definition. A set \(C \subset \mathbb{R}^d \) is called star body if the following hold:
(i) \(0 \in C \);
(ii) \(\forall x \in C, [0, x] \subseteq C \).

Definition. Let \(C \subseteq \mathbb{R}^d \) be a star body and \(\Lambda \subseteq \mathbb{R}^d \) a lattice. Then, we call \(\Lambda \) admissible for \(C \), if \(\Lambda \cap C = \{0\} \). We will define the critical determinant of \(C \) as
\[
\Delta(C) = \inf \{ \det \Lambda : \Lambda \text{ admissible for } C \}.
\]

Goal: We want to prove that \(\Delta(C) \) cannot be too large. We state the following theorem, without proof.

Theorem 1 (Mahler). The following holds:
\[
\Delta(C) = \min \{ \det \Lambda : \Lambda \text{ admissible for } C \}.
\]
Thus, the minimum exists and it is attained for some lattice.
Minkowski’s theorem proved at the beginning of the course translates to the following formulation:

\[
\frac{\Delta(C)}{\text{Vol}(C)} \geq \frac{1}{2^d},
\]

which provides us with a lower bound for \(\frac{\Delta(C)}{\text{Vol}(C)}\).

In 1905, Minkowski proved the following upper bound for \(\frac{\Delta(C)}{\text{Vol}(C)}\) for the case \(C = B^d\):

\[
\frac{\Delta(C)}{\text{Vol}(C)} \leq \frac{1}{2\zeta(d)},
\]

where \(\zeta(d)\) is the Riemann zeta function, defined by

\[
\zeta(d) = 1 + \frac{1}{2^d} + \frac{1}{3^d} + \ldots
\]

This result was generalized to any centrally symmetric convex disc \(C\) by Hlawka in the 1940’s.

Lemma 1. Let \(f : \mathbb{R}^d \to \mathbb{R}\) be a continuous function vanishing outside a bounded region, and, for any real number \(\gamma\), set

\[
V(\gamma) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \ldots, x_{d-1}, \gamma) dx_1, \ldots dx_{d-1}.
\]

Furthermore, let \(\Lambda'\) be the integer lattice in the hyperplane \(x_d = 0\), and let \(\delta > 0\) be fixed. Given any vector \(y \in \mathbb{R}^d\) of the form \(y = (y_1, \ldots, y_{d-1}, \delta)\), let \(\Lambda_y\) denote the lattice in \(\mathbb{R}^d\) generated by \(\Lambda'\) and \(y\). Then

\[
\int_0^1 \cdots \int_0^1 \left(\sum_{x \in \Lambda_y, x \neq 0} f(x) \right) dy_1 \ldots dy_{d-1} = \sum_{i \in \mathbb{Z} \setminus \{0\}} V(i\delta).
\]

Proof. The proof of the theorem can be found in J.Pach, P.Agarwal, Combinatorial Geometry.

Theorem 2 (Hlawka, 1944). Let \(g : \mathbb{R}^d \to \mathbb{R}\) be a bounded Riemann integrable function vanishing outside a bounded region, and let \(\epsilon > 0\). Then, there exists a unit lattice \(\Lambda\) in \(\mathbb{R}^d\), such that

\[
\sum_{0 \neq x \in \Lambda} g(x) < \int_{\mathbb{R}^d} g(x) dx + \epsilon.
\]

Proof. The proof of the theorem is based on the following can be found in J.Pach, P.Agarwal, Combinatorial Geometry.