1. Suppose A_1, \ldots, A_m and B_1, \ldots, B_m are subsets of $[n] = \{1, \ldots, n\}$ such that
 - $|A_i \cap B_i|$ is odd for every $1 \leq i \leq m$ and
 - $|A_i \cap B_j|$ is even for every $1 \leq i, j \leq m$ with $i \neq j$.
 Prove that $m \leq n$.

2. Let A_1, \ldots, A_m be subsets of $[n]$ and let s be a positive integer. Suppose that for every i, $|A_i|$ is not divisible by s, but the sizes of all pairwise intersections $|A_i \cap A_j|$ are divisible by s.
 (a) Prove that if $s = 7$ then $m \leq n$
 (b) Prove that if $s = 6$ then $m \leq 2n$.

3. Consider the reverse of the Oddtown problem: Suppose A_1, \ldots, A_m are subsets of $[n]$ such that $|A_i|$ is even but $|A_i \cap A_j|$ is odd for every $1 \leq i \neq j \leq m$.
 (a) Show that $m \leq n + 1$.
 (b) Show that if n is odd then $m \leq n$, and find sets A_1, \ldots, A_n satisfying the conditions.

4. Let v_1, \ldots, v_m be vectors in \mathbb{R}^n, all of whose coordinates are 0 or 1. Show that if they are linearly independent over the finite field \mathbb{F}_p for some prime p, then they are also linearly independent over \mathbb{R}.