Final Exam

Last name : First name :
Sciper : Section :

Exercise : 1 2 3 4 5 6 7 8 9 10 Σ
Grade :

- Write your answers in the space provided under each question.
- You may not use a calculator on this midterm.
- No additional materials are permitted.
- Even if you cannot solve a problem, write down your ideas.

Time : 8.15 – 11.15
Exercise 1: (10 points: 2 each)
Write the definition for each of the following.

a. Independent set of vertices in a graph.
 Solution.

b. Chromatic number of a graph.
 Solution.

c. k-connected graph.
 Solution.

d. Ramsey number $R(r)$.
 Solution.

e. Line graph.
 Solution.
Exercise 2: (21 points: 3 each)

Answer the following questions. No argument is needed.

For Yes or No questions, 2 negative points will be given for a wrong answer.

1. Let G be a connected graph with n vertices and T be a spanning tree of G. How many edges does T have?

 Answer.

2. Let G be a graph with $2n$ vertices and M be a perfect matching of G. How many edges does M have?

 Answer.

3. Is it true that every tree on 8 vertices has a perfect matching?

 Answer.

4. Let G be a graph that contains a cycle. Is it true that G has K_3 as a topological minor?

 Answer.

5. Does the graph of icosahedron (see Figure 1) have a $K_{3,3}$-minor?

 Answer.

6. Is it true that if a planar graph with n vertices has $3n - 6$ edges then all its faces are triangular (contain exactly three vertices)?

 Answer.

7. What is the maximum number of edges that a graph on 7 vertices can have if it contains no K_3?

 Answer.
Exercise 3: (30 points: 5 each.)
For the following questions, answer them with Yes or No and justify your answers.

1. Does there exist a graph that is 3-edge connected but not 2-vertex connected?
Proof. Yes / No

2. Is the graph of a cube (shown below) planar?

![Cube Graph](image)

Proof. Yes / No

3. Can we draw K_4 on the plane in such a way that every vertex lies on the boundary of the outer face? If yes, draw it, if no, justify your answer.
Proof. Yes / No
4. Is it true that for every graph G we have $\chi(G) \leq 1 + \text{average degree of } G$?
Proof.
Yes / No

5. Is it true that the number of graphs on 6 vertices with an Eulerian cycle is at most the number of graphs on 6 vertices that do not have an Eulerian cycle?
Proof.
Yes / No

6. Does it follow from 5 that the probability that a random graph $G(6, 1/2)$ with 6 vertices and edge probability 1/2 contains an Eulerian cycle is $\leq 1/2$?
Proof.
Yes / No
Exercise 4: (20 points: 5 for each part.)

Let G be the icosahedron graph (drawn in Figure 1).

Use the drawings of G in Figure 1 to justify your answer.

a. Find a matching of maximum size in G.
b. Find $\alpha(G)$.
c. Find $\chi(G)$.
d. Find $\chi'(G)$.
Figure 1: The icosahedron graph
Exercise 5: (10 points.)

For two graphs H_1, H_2, we defined $R(H_1, H_2)$ to be the least number such that for every graph G with at least $R(H_1, H_2)$ vertices either H_1 is a subgraph of G or H_2 is a subgraph of \overline{G} (the complement of G). What is $R(K_{1,5}, K_{1,5})$?
Exercise 6: (10 points.)

Denote by H the graph obtained from K_4 by deleting one edge. Calculate the expected number of induced copies of H in $G(n, p)$. Here $G(n, p)$ is a random graph model with edge probabilities equal to p.
Exercise 7: (15 points.)
If \(\binom{n}{k} \left(\frac{1}{2} \right)^{k^2-1} < 1 \) then there is a 2-coloring of the edges of \(K_{n,n} \) such that it does not contain a monochromatic copy of \(K_{k,k} \).

Hint: Argue as in the proof of the lower bound for \(R(r) \).
Exercise 8: (15 points.)
Show that for every graph \(G \) on \(n \) vertices we have \(\chi(G) + \chi(G) \leq n + 1 \).

Hint: Use induction on \(n \).
Exercise 9: (15 points.)

For any two graphs H_1, H_2, we defined $R(H_1, H_2)$ to be the least number such that for every graph G with at least $R(H_1, H_2)$ vertices either H_1 is a subgraph of G or H_2 is a subgraph of \overline{G} (the complement of G).

Show that $R(K_s, K_t) \leq R(K_{s-1}, K_t) + R(K_s, K_{t-1})$.

Hint: Take a vertex and look at its neighbors in G and in \overline{G}.
Exercise 10: (15 points.)
Construct a 3-regular graph without a perfect matching.

Hint: Make use of Tutte’s theorem on matchings in graphs.