1. Which of the following sets contains only non-planar graphs?
 a) \(\{K_{2,4}, K_6\} \)
 b) the set of graphs with 2015 vertices and 6035 edges
 c) the set of bipartite graphs with 2015 vertices and 4035 edges
 d) the set of graphs with minimum degree 5

2. Which of the following sets contains at least one non-planar graph?
 a) the set of graphs that contain no subdivision of \(K_5 \) or \(K_{3,3} \)
 b) the set of graphs that do not contain \(K_5 \) and \(K_{3,3} \) as a minor
 c) the set of graphs that contain no subdivision of \(K_5 \) and do not contain \(K_{3,3} \) as a minor
 d) none of the above

3. The maximum possible chromatic number of a bipartite planar graph is
 a) 2
 b) 3
 c) 4
 d) not defined, because it can be arbitrarily large

4. The crossing number of \(K_5 \) is
 a) 0
 b) 1
 c) 5
 d) 10

5. Let \(D \) be a drawing of a graph \(G \). Which of the following conditions guarantees that \(D \) is planar?
 a) every pair of adjacent edges in \(D \) cross an even number of times
 b) every pair of independent edges in \(D \) cross an even number of times
 c) every pair of edges in \(D \) cross an odd number of times
 d) every pair of edges in \(D \) cross at most once

6. Which statement is true?
 a) Every planar graph with \(n \) vertices and \(n \) edges can be drawn as a thrackle.
 b) Every bipartite planar graph can be drawn as a thrackle.
 c) Every bipartite planar graph can be drawn as an odd thrackle.
 d) none of the above
7. Let $M = \{5, 7, 9, 11, 13, 15, \ldots, 2015\}$. Which of the following is a partially ordered set?

a) (M, \preceq_a) where $m \preceq_a n$ means that m divides n

b) (M, \preceq_b) where $m \preceq_b n$ means that $m \leq n$ and there is a prime that divides both m and n

c) $(M \times M, \preceq_c)$ where $(m_1, m_2) \preceq_c (n_1, n_2) \iff (m_1 \leq n_1 \text{ or } m_2 \leq n_2)$

d) $(M \times M, \preceq_d)$ where $(m_1, m_2) \preceq_d (n_1, n_2) \iff m_1 + m_2 \leq n_1 + n_2$

8. Let $P = (2^5, \subseteq)$ be a poset of subsets of $[5] = \{1, 2, 3, 4, 5\}$ ordered by inclusion. Which of the following subsets is an antichain in P?

a) all subsets of $[5]$ that contain 1

b) all subsets of $[5]$ that do not contain 1

c) all subsets of $[5]$ that have exactly three elements

d) none of the above

9. For a graph G, let $\omega(G)$ be the number of vertices of the largest complete subgraph of G, and let $\alpha(G)$ be the size of the maximum independent set of G. Which statement is true for every comparability graph G with n vertices?

a) $\omega(G) \cdot \alpha(G) \leq n$

b) $\omega(G) \cdot \alpha(G) \geq n$

c) G is bipartite

d) none of the above

10. Which statement is true?

a) Every planar graph can be represented as the touching graph of non-overlapping discs in the plane, each of which has radius at least 1 and at most 10.

b) The vertex set of every planar graph with n vertices can be partitioned into four sets A, B, C, S such that there are no edges between A, B and C, and the sizes of the sets satisfy $|A|, |B|, |C| \leq 9n/10$ and $|S| \leq 10n^{1/3}$.

c) Every planar graph with n vertices has a straight-line drawing in the plane without crossings such that the longest edge is at most $10n$ times longer than the shortest edge.

d) none of the above

11. Suppose that both G and its complement G^\complement are planar graphs. Prove that G has at most ten vertices.

12. Prove that if D is a drawing of G with minimum possible number of crossings, then adjacent edges do not cross in D.

14. Prove that if G is a geometric graph with no two disjoint edges, then $|E(G)| \leq |V(G)|$.

15. Prove that every graph G with m edges has a bipartite subgraph with at least $m/2$ edges.