Let \(K_n \) denote a complete graph with \(n \) vertices. Given any positive integers \(k \) and \(l \), the **Ramsey number** \(R(k, l) \) is defined as the smallest integer \(n \) such that in any two-coloring of the edges of \(K_n \) by red and blue, either there is a red \(K_k \) or a blue \(K_l \).

1. (i) Prove that for every positive integer \(n \) we have
\[
R(k, k) > n - \binom{n}{k} 2^{1 - \binom{k}{2}}.
\]
(ii) Use part (i) to show that there exists a constant \(c \) such that for every \(k \geq 2 \) we have
\[
R(k, k) \geq (1 - \frac{c}{k}) \cdot \frac{k}{e} \cdot 2^{k/2}.
\]

2. (i) Prove that for every positive integer \(n \) and every real number \(p \) with \(0 \leq p \leq 1 \), we have
\[
R(4, k) > n - \binom{n}{k} p^{\binom{k}{2}} - \binom{n}{4} (1 - p)^6.
\]
(ii) Prove that there exists a constant \(c \) so that for every positive integer \(k \geq 2 \) we have
\[
R(4, k) \geq \frac{ck^2}{(\ln k)^2}.
\]

3. Consider the 3-uniform hypergraph \(H = (V, E) \) with the vertex set \(V \) and the set of hyperedges \(E \), that is, a system of 3-element subsets of \(V \). We call the set \(A \subset V \) an independent set for \(H \), if for every hyperedge \(e \in E \), we have \(e \not\subset A \). Prove that if \(|V| = n, |E| = m \geq n/3 \), then \(H \) contains an independent set of size at least \(\frac{2n^3/2}{3\sqrt{3m}} \).

4. For the random variable \(X \), we define the variance as
\[
\text{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2).
\]
Denote \(\mu = \mathbb{E}(X) \), \(\sigma^2 = \text{Var}(X) \). If \(\mu \) and \(\sigma^2 \) are finite with \(\sigma^2 \) being nonzero, then **Chebyshev’s inequality** states that for every positive real number \(r \) we have
\[
\Pr(|X - \mathbb{E}(X)| \geq r\sigma) \leq \frac{1}{r^2}.
\]
Use Chebyshev’s inequality to show that for every positive integer \(n \) we have
\[
\sum_{|k| < \sqrt{n}} \binom{2n}{n+k} \geq 2^{2n-1}.
\]

5. Consider the graph \(G = (V, E) \) with \(|V| = n > 2 \). Prove that there exist two vertices \(u, v \in V \) such that there are at least \(\frac{n-3}{2} \) vertices in \(V \setminus \{u, v\} \), which are adjacent to either both or neither of \(u, v \).

\$ – an optional contest problem. You may submit a solution until the beginning of the next lecture.