1. Let K_n denote a complete graph with n vertices. Given any positive integers k and l, the Ramsey number $R(k, l)$ is defined as the smallest integer n such that in any two-coloring of the edges of K_n by red and blue, either there is a red K_k or a blue K_l.

(i) Prove that if there is a real p, $0 \leq p \leq 1$ such that

$$\left(\frac{n}{3} \right) p^3 + \binom{n}{k} (1-p)^{\binom{k}{2}} < 1,$$

then we have $R(3, k) > n$.

(ii) Use the previous part to show that there exists a constant c such that

$$R(3, k) \geq \frac{ck}{\ln k}.$$

2. Suppose $n \geq 3$ and let H be an n-uniform hypergraph, i.e. each edge of H contains exactly n vertices. Prove that if the number of edges of H is at most $3n - \frac{1}{2} n^2$, then there exists a coloring of the vertices of H by 3 colors so that in every edge all 3 colors are represented.

3. Suppose $n \geq 2$ is a natural number and denote the set of residues modulo n^2 by $\mathbb{Z}_{n^2} = \{0, 1, 2, \ldots, n^2 - 1\}$. Consider $A \subset \mathbb{Z}_{n^2}$ with $|A| = n$. Prove that there is a set $B \subset \mathbb{Z}_{n^2}$ of size n such that at least half of the elements of \mathbb{Z}_{n^2} can be written as $a + b$ modulo n^2, where $a \in A$ and $b \in B$.

4. Let $n \geq 2$ be a natural number and consider the set A consisting of n integers. Define $A + A$ as

$$A + A = \{a + a' : a \neq a', a, a' \in A\}.$$

Prove that $|A + A| \geq 2n - 3$, and this bound is the best possible.

$\$ — an optional contest problem. You may submit a solution until the beginning of the next lecture.