1. Suppose that \(f : \mathbb{N} \rightarrow \mathbb{N} \) is a nondecreasing function satisfying the recursion \(f(3n) \geq 3f(n) + cn \) for some positive constant \(c \) and every \(n \in \mathbb{N} \). Prove that there is a positive constant \(c' \) such that \(f(n) > c'n \log n \).

2. Construct a geometric graph with \(n \) vertices, at least \(4n - o(n) \) edges, and no three pairwise crossing edges. Can you find such a graph with at least \(4n - c \) edges for some constant \(c \)?

3. Let \(G \) be a random graph with \(n \) vertices, where each edge of \(G \) is selected independently with probability \(1/2 \). Prove that for sufficiently large \(n \), with probability at least \(1/2 \), the bisection width of \(G \) satisfies \(b(G) \geq n^2/100 \).

4. Prove, using the crossing lemma, that if no four edges of a geometric graph \(G \) with \(n \) vertices are pairwise crossing, then \(|E(G)| < cn^{7/4} \) for a suitable constant \(c \).

5. For some constants \(c_1, c_2 > 0 \) and arbitrarily large \(n \), prove that there is a graph \(G_n \) with \(n \) vertices, at most \(c_1 n \) edges, crossing number at least \(c_2 n^2 \), and such that every subgraph of \(G_n \) with \(m \) vertices has at most \(c_1 m \) edges.

\(\ddot{\smile} \) — an optional homework. You may submit a written solution of this problem until the beginning of the next lecture and receive our feedback.

\(\ddagger \) — an optional contest problem. You may submit a solution until the beginning of the next lecture. We encourage you to participate.

New exercises and notes can be found at \url{http://dcg.epfl.ch/page-117408-en.html}.