1. Let \(X_1, X_2, \ldots, X_n \) be independent random variables taking values \(-1, +1\) such that for all \(i \), we have
\[
\Pr(X_i = 1) = \Pr(X_i = -1) = \frac{1}{2}.
\]
Denote \(X = \sum_{k=1}^{n} X_k \). Compute the following expected values:
(i) \(\mathbb{E}(X^2) \).
(ii) \(\mathbb{E}(X^4) \).

2. Let \(A = (a_{ij})_{i,j=1}^{n} \) be a random \(n \times n \) \(\{0, 1\} \)-matrix such that all the entries are independent and for all \(i, j \) we have
\[
\Pr(a_{ij} = 0) = \Pr(a_{ij} = 1) = \frac{1}{2}.
\]
We define the **Permanent** of \(A \) as
\[
\text{Per}(A) = \sum_{\pi} \prod_{k=1}^{n} a_{k\pi(k)},
\]
where the sum is taken over all the permutations of \(\{1, 2, 3, \ldots, n\} \). Compute \(\mathbb{E}(\text{Per}(A)) \).

3. A **Tournament** \(T = (V_T, E_T) \) is a complete directed graph on the vertex set \(V_T \), i.e. for all distinct vertices \(v, v' \in V_T \), exactly one of \((v, v'), (v', v)\) belongs to \(E_T \). Prove that every tournament \(T \) has a path which visits each vertex of \(T \) exactly once. (Such a path is called a **Hamiltonian path** in \(T \).)

4. Let \(K_n \) denote a complete graph with \(n \) vertices. Given any positive integers \(k \) and \(l \), the **Ramsey number** \(R(k, l) \) is defined as the smallest integer \(n \) such that in any two-colouring of the edges of \(K_n \) by red and blue, either there is a red \(K_k \) or a blue \(K_l \). Prove that \(R(k, l) \leq \binom{k+l-2}{k-1} \).

5. An \(n \times n \) chess board is broken so that only the diagonal and the upper and lower levels are left. See Figure 1 for \(n = 10 \). We start from the lower left corner square \(A \) and at each step, we can go to the right or upper adjacent squares, so in the first step, we are allowed to move to one of the squares \(C \) or \(D \). Compute the number of ways we can reach the upper right corner square \(B \).

![Figure 1](image-url)
§ 6. Consider the lower triangular part of an $n \times n$ chess board. See Figure 2 for $n = 10$. Compute the number of ways one can start from the square A and reach the square B with the same conditions as in Problem 5.

§ — an optional contest problem. You may submit a solution until the beginning of the next lecture.