If P is a set of n points in the plane in general position, a segment s connecting two points of P is a **halving segment** if each open halfplane determined by s contains $\lfloor (n-2)/2 \rfloor$ or $\lceil (n-2)/2 \rceil$ points of P.

1. We have four random variables, X_1, X_2, X_3, X_4. We say that an event is **likely** if its chance of occurring is larger than 50%. If the events $X_1 > X_2$ and $X_3 > X_4$ are both likely, then is $X_1 + X_3 > X_2 + X_4$ also necessarily likely?

2. Prove that the number of incidences between n points and n circles in the plane is at most $O(n^{3/2})$.

3. Prove that if a graph with $n \geq 3$ vertices can be drawn in the plane so that every edge crosses at most one other edge, then it has at most $4n - 8$ edges.

4. Let P be a set of an even number of points in the plane in general position, and let v be a point in P. Show that the halving segments and their reflections through v alternate around v. That is, between any pair of halving segments starting at v, there is a reflection of another halving segment starting at v.

5. Suppose that n is even. Let G be the geometric graph determined by the halving segments of n points in the plane in general position. Let c be the number of crossing in G. Prove that

$$c + \sum_{v \in V(G)} \left(\frac{(d(v) + 1)/2}{2} \right) = \binom{n/2}{2}.$$

Advice: start with n points in convex position and move them one by one to the vertices of G.

6. A **dice** (or a **die**) is a cube with a positive integer written on each of its sides (different sides can have the same number). We say that a dice A is **better** than a dice B if the probability that after throwing A and B on the table, the number on top of A is greater than the number on top of B, is more than 50%. Design three dice A, B, C such that A is better than B, B is better than C, and C is better than A.

— an optional homework. You may submit a written solution of this problem until the beginning of the next lecture and receive our feedback.

— an optional contest problem. You may submit a solution until the beginning of the next lecture. We encourage you to participate.

New exercises and notes can be found at http://dcg.epfl.ch/page-117408-en.html.