A binary relation \preceq on a set X is a partial order on X if \preceq is reflexive, antisymmetric and transitive. Two elements of X are comparable by \preceq if $x \preceq y$ or $y \preceq x$, otherwise they are incomparable. A partial order \preceq on X is a total order if every two elements of X are comparable. The comparability graph $G(P)$ of a partially ordered set $P = (X, \preceq)$ is the graph with vertex set X such that for every two distinct elements $x, y \in X$, xy is an edge of $G(P)$ if and only if x and y are comparable by \preceq. A chain is a totally ordered subset. An antichain is a subset of elements that are pairwise incomparable.

1. Show that every partial order on a set X with n elements can be extended to a total order on X.

2. Show that C_5 is not a comparability graph.

3. Let $P_n = (\{1, 2, \ldots, n\}, |)$ be a partially ordered set where $k|m$ means that m is divisible by k. Find
 a) a longest chain in P_n,
 b) a largest antichain in P_n.

4. Consider the following partial order on the set of vectors in \mathbb{R}^d with positive integer coordinates: $(n_1, n_2, \ldots, n_d) \preceq_d (m_1, m_2, \ldots, m_d)$ if and only if for every $i = 1, 2, \ldots, d$, we have $n_i \leq m_i$. Prove that
 a) $(\{1, 2, \ldots\}^2, \preceq_2)$ has no infinite antichain,
 b) $(\{1, 2, \ldots\}^3, \preceq_3)$ has no infinite antichain.

5. Let G be a complete graph drawn in the plane so that every two edges cross at most once and adjacent edges do not cross. For an edge e, we define a graph $H_e = (V(G), F_e)$, where F_e is the set of edges of G that cross e. Prove that H_e is a comparability graph.