You can hand in one of the following problems at the start of Tuesday’s problem session. Please explain your solution carefully. Don’t forget to put your name.

NP-Hardness

1. Show that the following two optimization problems are \(\mathcal{NP} \)-hard:

 Independent Set: Given an undirected graph \(G \), find a maximum cardinality independent set, i.e. a set \(I \subset V(G) \) such that \(E(I) = \{ uv \in E(G) : u, v \in I \} = \emptyset \).

 Clique: Given an undirected graph \(G \), find a maximum cardinality clique, i.e. a \(K \subset V(G) \) such that \(uv \in E(G) \) for all \(u, v \in K \).

2. Show that the following optimization problem is \(\mathcal{NP} \)-hard:

 Longest Path: Given a directed graph \(G \) with weights \(w : E(G) \to \mathbb{R} \), and \(s, t \in V(G) \), find a maximum weight directed path from \(s \) to \(t \).

3. Show that the following optimization problem is \(\mathcal{NP} \)-hard:

 Integer Programming: Given a matrix \(A \in \mathbb{Z}^{m \times n} \) and vectors \(b \in \mathbb{Z}^m, c \in \mathbb{Z}^m \), find a vector \(x \in \mathbb{Z}^n \) such that \(Ax \leq b \) and \(cx \) is maximum, if possible.

4. Show that the following optimization problem is \(\mathcal{NP} \)-hard:

 Metric TSP: Let \(G \) be a complete undirected graph \(G \) with a weight function \(d : E(G) \to \mathbb{R}_{>0} \) that satisfies the triangle inequality
 \[
 d(uw) \leq d(uv) + d(vw)
 \]
 for all \(u, v, w \in V(G) \).
 Find a minimum weight Hamilton cycle in \(G \).