Matroid Intersection

1. Show that the problem of finding a Hamilton path from s to t in a given directed graph D can be solved using an intersection of 3 matroids.

First remove all edges in $\delta^\text{in}(s)$ and $\delta^\text{out}(t)$ from D.

We take the following three matroids with $X = E(D)$:

\[
\mathcal{M}_1 = P(\{\delta^\text{in}(v)\}), \\
\mathcal{M}_2 = P(\{\delta^\text{out}(v)\}), \\
\mathcal{M}_3 = F(G).
\]

An edge set that is independent with respect to \mathcal{M}_1 and \mathcal{M}_2 has at each vertex at most one incoming edge and at most one outgoing edge. Hence it consists of cycles and paths. If it is also independent with respect to \mathcal{M}_3, then there are no cycles, so it is a disjoint union of paths.

We claim that D has a Hamilton path if and only if a maximum independent set in this intersection of 3 matroids has $|V(D)| - 1$ edges.

Let I be a maximum common independent set. If it is a spanning tree, then it must be one single path, which must then be a Hamilton path from s to t (because we removed those edges at the start).

On the other hand, if I is not spanning tree, then it has at most $|V(D)| - 2$ edges. That means there is no Hamilton cycle, because that would be a common independent set with $|V(D)| - 1$ edges.

2. Given an undirected graph $G = (V,E)$, an orientation is a directed graph $D = (V,E')$ with a bijection $\varphi : E' \to E$ such that $\varphi(ab) = \{a,b\}$. In other words, each edge $\{a,b\} \in E$ is given a direction, either ab or ba.

Given $k : V \to \mathbb{N}$, show that the problem of finding an orientation such that

\[
\delta^\text{in}(v) = k(v)
\]

for each $v \in V$, or showing that none exists, can be solved using the matroid intersection algorithm.

We just have to give two matroids such that a common independent set is an orientation satisfying that condition. Let X be the set of directed edges ab and ba for each edge $\{a,b\} \in E(G)$. Then the matroids are

\[
\mathcal{M}_1 = P(\{uw,vu\}_{u,v} \in E(G)), \\
\mathcal{M}_2 = \{Y \subset X : |Y \cap \delta^\text{in}(v)| \leq k \forall v \in V(G)\}
\]

That the second one is a matroid is proved just like for partition matroids.

A common independent set would be an orientation because of the first matroid (one direction per edge), and it would satisfy $\delta^\text{in}(v) \leq k(v)$ for all v due to the second matroid.

Then an orientation as required exists if and only if there is a common independent set of size $\sum_{v \in V(G)} k(v)$.
3. Use the matroid intersection algorithm to show that there is no simultaneous spanning tree in the following two graphs (i.e., there is no \(T \subset \{a, b, \ldots, j\} \) that is a spanning tree in both).

If we do the greedy part of the algorithm in alphabetical order, then it would find the common independent set \(\{a, c, e, g\} \) (if we used a different order, we would get something “isomorphic”). It is not a spanning tree in either graph. If we now draw the directed graph as in the matroid intersection algorithm, we’ll see that there is no path from \(X_1 = \{f, h, i\} \) to \(X_2 = \{b, d, j\} \). Alternatively, we could observe that

\[
U = \{a, b, c, d, j\}
\]

(the set of vertices in \(D_I \) from which \(X_2 \) can be reached) gives equality in \(|I| \leq r_{M_1}(U) + r_{M_2}(X - U)\), which implies that \(I \) is maximal (see the matroid intersection theorem).

4. Make up 2 matroids such that the matroid intersection algorithm needs at least 2 non-greedy steps (i.e., with \(|Q| > 1\)) to get a maximum common independent set.