A structure theorem for product sets in extra special groups

Thang Pham∗ Michael Tait† Le Anh Vinh‡ Robert Won§

Abstract

Hegyvári and Hennecart showed that if B is a sufficiently large brick of a Heisenberg group, then the product set $B \cdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra special groups as well as to a large family of quasigroups.

1 Introduction

Let p be a prime. An extra special group G is a p-group whose center Z is cyclic of order p such that G/Z is an elementary abelian p-group (nice treatments of extra special groups can be found in [2, 6]). The extra special groups have order p^{2n+1} for some $n \geq 1$ and occur in two families. Denote by H_n and M_n the two non-isomorphic extra special groups of order p^{2n+1}. Presentations for these groups are given in [4]:

$$H_n = \langle a_1, b_1, \ldots, a_n, b_n, c \mid [a_i, a_j] = [b_i, b_j] = 1, [a_i, b_j] = 1 \text{ for } i \neq j, [a_i, c] = [b_i, c] = 1, [a_i, b_i] = c, a_i^p = b_i^p = c_i^p = 1 \text{ for } 1 \leq i \leq n \rangle$$

$$M_n = \langle a_1, b_1, \ldots, a_n, b_n, c \mid [a_i, a_j] = [b_i, b_j] = 1, [a_i, b_j] = 1 \text{ for } i \neq j, [a_i, c] = [b_i, c] = 1, [a_i, b_i] = c, a_i^p = c_i^p = 1, b_i^p = c \text{ for } 1 \leq i \leq n \rangle.$$

From these presentations, it is not hard to see that the center of each of these groups consists of the powers of c so are cyclic of order p. It is also clear that the quotient of both groups by their centers yield elementary abelian p-groups.

In this paper we consider the structure of products of subsets of extra special groups. The structure of sum or product sets of groups and other algebraic structures has a rich history in combinatorial number theory. One seminal result is Freiman’s theorem [5], which asserts that if A is a subset of integers and $|A + A| = O(|A|)$, then A must be a subset of a small generalized arithmetic progression. Green and Ruzsa [7] showed that the same result is true in any abelian group. On the other hand, commutativity is important as the theorem is not true for general non-abelian groups [5]. With this in mind, Hegyvári and Hennecart were motivated to study what actually can be said about the structure of product sets in non-abelian groups. They proved the following theorem.

∗Department of Mathematics, EPFL, Lausanne, Switzerland. Email thang.pham@epfl.ch
†Department of Mathematical Sciences, Carnegie Mellon University. Research is supported by NSF grant DMS-1606350. Email: mtait@cmu.edu.
‡University of Education, Vietnam National University. Email: vinhla@vnu.edu.vn
§Department of Mathematics, Wake Forest University. Email: wonrj@wfu.edu

Theorem 1.1 (Hegyvári-Hennecart, [9]). For every $\varepsilon > 0$, there exists a positive integer n_0 such that if $n \geq n_0$, $B \subseteq H_n$ is a brick and

$$|B| > |H_n|^{3/4+\varepsilon}$$

then there exists a non trivial subgroup G' of H_n, namely its center $\langle 0, 0, F_p \rangle$, such that $B \cdot B$ contains at least $|B|/p$ cosets of G'.

The group H_1 is the classical Heisenberg group, so the groups H_n form natural generalizations of the Heisenberg group. Our main focus is on the second family of extra special groups M_n. The group H_n has a well-known representation as a subgroup of $GL_{n+2}(F_p)$ consisting of upper triangular matrices

$$\begin{bmatrix}
1 & x & z \\
0 & I_n & y \\
0 & 0 & 1
\end{bmatrix}$$

where $x, y \in F_p^n, z \in F_p$, and I_n is the $n \times n$ identity matrix. Let $e_i \in F_p^n$ be the ith standard basis vector. In the presentation for H_n, a_i corresponds to $\langle e_i, 0, 0 \rangle, b_i$ corresponds to $\langle 0, e_i, 0 \rangle$ and c corresponds to $\langle 0, 0, 1 \rangle$. By matrix multiplication, we have

$$[x, y, z] \cdot [x', y', z'] = [x + x', y + y', z + z' + \langle x, y' \rangle]$$

where \langle , \rangle denotes the usual dot product.

A second focus of this paper is to consider generalizations of the higher dimensional Heisenberg groups where entries come from a quasifield Q rather than F_p. We recall the definition of a quasifield:

A set L with a binary operation $*$ is called a loop if

1. the equation $a * x = b$ has a unique solution in x for every $a, b \in L$,
2. the equation $y * a = b$ has a unique solution in y for every $a, b \in L$, and
3. there is an element $e \in L$ such that $e * x = x * e = x$ for all $x \in L$.

A (left) quasifield Q is a set with two binary operations $+$ and $*$ such that $(Q, +)$ is a group with additive identity 0, $(Q^*, *)$ is a loop where $Q^* = Q \setminus \{0\}$, and the following three conditions hold:

1. $a * (b + c) = a * b + a * c$ for all $a, b, c \in Q$,
2. $0 * x = 0$ for all $x \in Q$, and
3. the equation $a * x = b * x + c$ has exactly one solution for every $a, b, c \in Q$ with $a \neq b$.

Given a quasifield Q, we define $H_n(Q)$ by the set of elements

$$\{[x, y, z] : x \in Q^n, y \in Q^n, z \in Q\}$$

and a multiplication operation defined by

$$[x, y, z] \cdot [x', y', z'] = [x + x', y + y', z + z' + \langle x, y' \rangle]$$

Then $H_n(Q)$ is a quasigroup with an identity element (ie, a loop), and when $Q = F_p$ we have that $H_n(Q)$ is the n-dimensional Heisenberg group H_n.

2
1.1 Statement of main results

Let H_n be a Heisenberg group. A subset B of H_n is said to be a brick if

$$B = \{[x, y, z] \text{ such that } x \in X, y \in Y, z \in Z\}$$

where $X = X_1 \times \cdots \times X_n$ and $Y = Y_1 \times \cdots \times Y_n$ with non-empty subsets $X_i, Y_i, Z \subseteq \mathbb{F}_p$.

Our theorems are analogs of Hegyvári and Hennecart’s theorem for the groups M_n and the quasigroups $H_n(Q)$. In particular, their structure result is true for all extra special groups. We will define what it means for a subset B of M_n to be a brick in Section 2.1.

Theorem 1.2. For every $\varepsilon > 0$, there exists a positive integer $n_0 = n_0(\varepsilon)$ such that if $n \geq n_0$, $B \subseteq M_n$ is a brick and $|B| > |M_n|^{3/4+\varepsilon}$

then there exists a non trivial subgroup G' of M_n, namely its center, such that $B \cdot B$ contains at least $|B|/p$ cosets of G'.

Combining Theorem 1.1 and Theorem 1.2, we have

Theorem 1.3. Let G be an extra special group. For every $\varepsilon > 0$, there exists a positive integer $n_0 = n_0(\varepsilon)$ such that if $n \geq n_0$, $B \subseteq G$ is a brick and $|B| > |G|^{3/4+\varepsilon}$

then there exists a non trivial subgroup G' of G, namely its center, such that $B \cdot B$ contains at least $|B|/p$ cosets of G'.

For Q a finite quasifield, we similarly define a subset $B \subseteq H_n(Q)$ to be a brick if

$$B = \{[x, y, z] \text{ such that } x \in X, y \in Y, z \in Z\}$$

where $X = X_1 \times \cdots \times X_n$ and $Y = Y_1 \times \cdots \times Y_n$ with non-empty subsets $X_i, Y_i, Z \subseteq Q$.

Theorem 1.4. Let Q be a finite quasifield of order q. For every $\varepsilon > 0$, there exists an $n_0 = n_0(\varepsilon)$ such that if $n \geq n_0$, $B \subseteq H_n(Q)$ is a brick, and $|B| > |H_n(Q)|^{3/4+\varepsilon}$,

then there exists a non trivial subquasigroup G' of $H_n(Q)$, namely its center $[0, 0, Q]$ such that $B \cdot B$ contains at least $|B|/q$ cosets of G'.

Taking $Q = \mathbb{F}_p$ gives Theorem 1.1 as a corollary.

2 Preliminaries

2.1 A description of M_n

We give a description of M_n with which it is convenient to work. Define a group G whose elements are triples $[x, y, z]$ where $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$, with $x_i, y_i, z \in \mathbb{F}_p$ for $1 \leq i \leq n$. The group operation in G is given by

$$[x, y, z] \cdot [x', y', z'] = [x + x', y + y', z + z' + \langle x, y' \rangle + f(y, y')]$$
where the function \(f : \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{N} \) is defined by

\[
f((y_1, \ldots, y_n), (y'_1, \ldots, y'_n)) = \sum_{i=1}^{n} \left[\frac{y_i \mod p + y'_i \mod p}{p} \right].
\]

Concretely, \(f \) counts the number of components where (after reducing mod \(p \)) \(y_i + y'_i \geq p \). This is slight abuse of notation, as \(y, y' \in \mathbb{F}_p^n \), but is well-defined if we regard them as elements of \(\mathbb{Z}^n \).

Lemma 2.1. With the operation defined above, \(G \) is a group isomorphic to \(M_n \).

Proof. We first need to check associativity of the operation. After cancellation, this reduces to checking the equality

\[
f(y + y', y'') + f(y, y') = f(y, y' + y'') + f(y', y'')
\]

which holds because

\[
\begin{align*}
\left[\frac{(y_i + y'_i) \mod p + y_i \mod p}{p}\right] + \left[\frac{y_i \mod p + y'_i \mod p}{p}\right] \\
= \left[\frac{y_i \mod p + y'_i \mod p + y''_i \mod p}{p}\right] \\
= \left[\frac{(y_i + y'_i) \mod p + y_i \mod p}{p}\right] + \left[\frac{(y_i + y'_i) \mod p + y_i \mod p}{p}\right],
\end{align*}
\]

as all three of the expressions count the largest multiple of \(p \) dividing

\[y_i \mod p + y'_i \mod p + y''_i \mod p.\]

Since \(G \) is generated \(\{[e_i, 0, 0], [0, e_i, 0], [0, 0, 1]\} \), we define a homomorphism \(\varphi : G \to M_n \) by \(\varphi([e_i, 0, 0]) = a_i, \varphi([0, e_i, 0]) = b_i, \) and \(\varphi([0, 0, 1]) = c. \) This map is clearly surjective and it is easy to check that the generators of \(G \) satisfy the relations in \(M_n \). Since \(|G| = p^{2n+1} \), \(\varphi \) is an isomorphism and \(G \cong M_n \), as claimed. \(\square\)

With this description, there is a natural way to define a brick in \(M_n \). A subset \(B \) of \(M_n \) is said to be a **brick** if

\[
B = \{[x, y, z] \text{ such that } x \in X, y \in Y, z \in Z\}
\]

where \(X = X_1 \times \cdots \times X_n \) and \(Y = Y_1 \times \cdots \times Y_n \) with nonempty subsets \(X_i, Y_i, Z \subseteq \mathbb{F}_p \).

2.2 Tools from spectral graph theory

For a graph \(G \) with vertex set \(\{v_1, \ldots, v_n\} \), the *adjacency matrix* of \(G \) is the matrix with a 1 in row \(i \) and column \(j \) if \(v_i \sim v_j \) and a 0 otherwise. Since this is a real, symmetric matrix, it has a full set of real eigenvalues. Let \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) be the eigenvalues of its adjacency matrix.

If \(G \) is a \(d \)-regular graph, then its adjacency matrix has row sum \(d \). In this case, \(\lambda_1 = d \) with the all-one eigenvector \(1 \). Let \(v_i \) denote the corresponding eigenvector for \(\lambda_i \). We will make use of the trick that for \(i \geq 2, v_i \in 1^\perp \), so \(Jv_i = 0 \) where \(J \) is the all-one matrix of size \(n \times n \) (see \[1\] for more background on spectral graph theory).
It is well-known (see [11, Chapter 9] for more details) that if λ_2 is much smaller than the degree d, then G has certain random-like properties. A graph is called bipartite if its vertex set can be partitioned into two parts such that all edges have one endpoint in each part. For G be a bipartite graph with partite sets P_1 and P_2 and $U \subseteq P_1$ and $W \subseteq P_2$, let $e(U, W)$ be the number of pairs (u, w) such that $u \in U$, $w \in W$, and (u, w) is an edge of G. We recall the following well-known fact (see, for example, [11]).

Lemma 2.3. If Q is a quasifield of order q, then the graph $SP_{Q,n}$ is q^n regular and has $\lambda_2 \leq 2^{1/2}q^{n/2}$.

We provide a proof of Lemma 2.3 for completeness in the appendix, and we note that similar lemmas were proved in [11] and [10].

3 Proof of Theorem [1,2]

Lemma 3.1. Let $B \subseteq M_n$ be a brick in M_n with $B = [X, Y, Z]$ where $X = X_1 \times \cdots \times X_n$ and $Y = Y_1 \times \cdots \times Y_n$. For given $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{F}_p^n$, suppose that

$$|Z|^2 \prod_{i=1}^n |X_i \cap (a_i - X_i)||Y_i \cap (b_i - Y_i)| > 2p^{n+2},$$

then we have

$$B \cdot B \supseteq [a, b, \mathbb{F}_p].$$

Proof. Let $X'_i = X_i \cap (a_i - X_i), Y'_i = Y_i \cap (b_i - Y_i), X' = (X'_1, \ldots, X'_n),$ and $Y' = (Y'_1, \ldots, Y'_n).$ We first have

$$B \cdot B \supseteq \{[x, y, z] \cdot [a - x, b - y, z'] : x \in X', y \in Y', z, z' \in Z\}.$$

On the other hand, it follows from the multiplicative rule in M_n that for

$$[x, y, z] \cdot [a - x, b - y, z'] = [a, b, z + z' + \langle x, (b - y) \rangle + f(y, b - y)].$$

To conclude the proof of the lemma, it is enough to prove that

$$\{z + z' + \langle x, (b - y) \rangle + f(y, b - y) : z, z' \in Z, x \in X', y \in Y'\} = \mathbb{F}_p.$$
under the condition \(|Z|^2|X'||Y'| > 2p^{n+2}\).

To prove this claim, let \(\lambda\) be an arbitrary element in \(\mathbb{F}_p\), we define two sets in the sum-product graph \(SP_{\mathbb{F}_p,n}\), \(E \subseteq X\) and \(F \subseteq Y\) as follows:

\[
E = X' \times (-Z + \lambda), \quad F = \left\{ \langle b - y, -z - f(y, b - y) \rangle : z \in Z, y \in Y' \right\}.
\]

It is clear that \(|E| = |Z||X'|\) and \(|F| = |Z||Y'|\). It follows from Lemma 2.2 and Lemma 2.3 that if \(|Z|^2|X'||Y'| > 2p^{n+2}\), then \(e(E, F) > 0\). It follows that there exist \(x, y \in X', y' \in Y'\), and \(z, z' \in Z\) such that

\[
z + z' + \langle x, (b - y) \rangle + f(y, b - y) = \lambda.
\]

Since \(\lambda\) is chosen arbitrarily, we have

\[
\{ z + z' + \langle x, (b - y) \rangle + f(y, b - y) : z, z' \in Z, x \in X', y' \in Y' \} = \mathbb{F}_p.
\]

Proof of Theorem 1.2. We follow the method of [9, Theorem 1.3]. First we note that if \(|Z| > p/2\), then we have \(Z + Z = \mathbb{F}_p\). This implies that

\[
B \cdot B = [2X, 2Y, \mathbb{F}_p].
\]

Therefore, \(B \cdot B\) contains at least \(|B|/p \geq |B|/p\) cosets of the subgroup \([0, 0, \mathbb{F}_p]\). Thus, in the rest of the proof, we may assume that \(|Z| \leq p/2\).

For \(1 \leq i \leq n\), we have

\[
\sum_{a_i \in \mathbb{F}_p} |X_i \cap (a_i - X_i)| = |X_i|^2, \quad \sum_{b_i \in \mathbb{F}_p} |Y_i \cap (b_i - Y_i)| = |Y_i|^2,
\]

which implies that

\[
\prod_{i=1}^n \left(\sum_{a_i \in \mathbb{F}_p} |X_i \cap (a_i - X_i)| \right) \left(\sum_{b_i \in \mathbb{F}_p} |Y_i \cap (b_i - Y_i)| \right) = \prod_{i=1}^n |X_i|^2 |Y_i|^2.
\]

Therefore we obtain

\[
\sum_{a, b \in \mathbb{F}_p^n} \prod_{i=1}^n |X_i \cap (a_i - X_i)||Y_i \cap (b_i - Y_i)| = \prod_{i=1}^n |X_i|^2 |Y_i|^2. \tag{1}
\]

Let \(N\) be the number of pairs \((a, b) \in \mathbb{F}_p^n \times \mathbb{F}_p^n\) such that

\[
|Z|^2 \prod_{i=1}^n |X_i \cap (a_i - X_i)||Y_i \cap (b_i - Y_i)| > 2p^{n+2}.
\]

It follows from Lemma 2.3 that \([a, b, \mathbb{F}_p] \subseteq B \cdot B\) for such pairs \((a, b)\). Then by equation (1)

\[
\left(\prod_{i=1}^n |X_i||Y_i| \right) N + 2p^{n+2}(p^{2n} - N) > \left(\prod_{i=1}^n |X_i||Y_i| \right)^2,
\]

and so

\[
N > \frac{\prod_{i=1}^n |X_i|^2 |Y_i|^2 - 2p^{3n+2}}{\prod_{i=1}^n |X_i||Y_i| - 2p^{n+2}}.
\]
By the assumption of Theorem 1.2, we have

\[|B| = |Z| \left(\prod_{i=1}^{n} |X_i||Y_i| \right) > |M_n|^{3/4+\varepsilon} = p^{3n/2+3/4+\varepsilon(2n+1)}. \tag{2} \]

Thus when \(n > 1/\varepsilon \), we have

\[\prod_{i=1}^{n} |X_i||Y_i| > p^{3n/2+7/4}, \]

since \(|Z| \leq p \).

In other words,

\[N \geq (1 - 2p^{-3/2}) \prod_{i=1}^{n} |X_i||Y_i| = (1 - 2p^{-3/2}) \frac{|B|}{|Z|} \geq \frac{|B|}{p}, \]

since \(|Z| \leq p/2 \).

4 Proof of Theorem 1.4

Lemma 4.1. Let \(Q \) be a quasifield of order \(q \) and let \([X, Y, Z] = B \subseteq H_n(Q)\) be a brick. For a given \(a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in Q^n \), suppose that

\[|Z|^2 \prod_{i=1}^{n} |X_i \cap (a_i - X_i)||Y_i \cap (b_i - Y_i)| > 2q^{n+2}, \]

then we have

\[B \cdot B \supseteq [a, b, Q]. \]

Proof. The proof is similar to that of Lemma 3.1 so we leave some details to the reader.

Let \(X' = (X_1 \cap (a_1 - X_1), \ldots, X_n \cap (a_n - X_n)), Y' = (Y_1 \cap (b_1 - Y_1), \ldots, Y_n \cap (b_n - Y_n)) \) and \(E \subseteq X, F \subseteq Y \) in \(SP_{Q,n} \) where

\[E = X' \times (-Z + \lambda), F = \{(b - y, -z) : z \in Z, y \in Y'\}, \]

and \(\lambda \in Q \) is arbitrary. Then \(e(E, F) > 0 \) which implies that there exist \(x \in X', y \in Y' \), and \(z, z' \in Z \) such that

\[z + z' + \langle x, (b - y) \rangle = \lambda. \]

This implies that

\[[a, b, Q] \subseteq B \cdot B. \]

The rest of the proof of Theorem 1.4 is identical to that of Theorem 1.2. We need only to show that if \(Z \subseteq Q \) and \(|Z| > |Q|/2 \), then \(Z + Z = Q \). However, this follows since the additive structure of \(Q \) is a group.
References

Appendix

Proof of Lemma 2.3 Let Q be a finite quasifield of order q and let $SP_{Q,n}$ be the bipartite graph with partite sets $X = Y = Q^n \times Q$ where $(x_1, \ldots, x_n, z_x) \sim (y_1, \ldots, y_n, z_y)$ if and only if

$$z_x + z_y = x_1 * y_1 + \cdots + x_n * y_n. \tag{3}$$

First we show that $SP_{Q,n}$ is q^n regular. Let (x_1, \ldots, x_n, z_x) be an arbitrary element of X. Choose $y_1, \ldots, y_n \in Q$ arbitrarily. Then there is a unique choice for z_y that makes (3) hold, and so the degree of (x_1, \ldots, x_n, z_x) is q^n. A similar argument shows the degree of each vertex in Y is q^n.

Next we show that λ_2 is small. Let M be the adjacency matrix for $SP_{Q,n}$ where the first q^{n+1} rows and columns are indexed by X. We can write

$$M = \begin{pmatrix} 0 & \bar{N} \\ N^T & 0 \end{pmatrix}$$

where N is the $q^{n+1} \times q^{n+1}$ matrix whose $(x_1, \ldots, x_n, z_x)_X \times (y_1, \ldots, y_n, z_y)_Y$ entry is 1 if (3) holds and 0 otherwise.

The matrix M^2 counts the number of walks of length 2 between vertices. Since $SP_{Q,n}$ is q^n regular, the diagonal entries of M^2 are all q^n. Since $SP_{Q,n}$ is bipartite, there are no
walks of length 2 from a vertex in X to a vertex in Y. Now let $x = (x_1, \ldots, x_n, x_z)$ and $x' = (x'_1, \ldots, x'_n, x'_z)$ be two distinct vertices in X. To count the walks of length 2 between them is equivalent to counting their common neighbors in Y. That is, we must count solutions (y_1, \ldots, y_n, z_y) to the system of equations

$$x_z + y_z = x_1 * y_1 + \cdots + x_n * y_n$$

and

$$x'_z + y_z = x'_1 * y_1 + \cdots + x'_n * y_n.$$ \hfill (4)

Case 1: For $i \leq 1 \leq n$ we have $x_i = x'_i$. In this case we must have $x_z \neq x'_z$. Subtracting (4) from (5) shows that the system has no solutions and so x and x' have no common neighbors.

Case 2: There is an i such that $x_i \neq x'_i$. Subtracting (5) from (4) gives

$$x_z - x'_z = x_1 * y_1 + \cdots + x_n * y_n - x'_1 * y_1 - \cdots - x'_n * y_n.$$ \hfill (6)

There are q^{n-1} choices for $y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n$. Since $x_i - x'_i \neq 0$, these choices determine y_i uniquely, which then determines y_z uniquely. Therefore, in this case x and x' have exactly q^{n-1} common neighbors.

A similar argument shows that for $y = (y_1, \ldots, y_n, z)$ and $y' = (y'_1, \ldots, y'_n, y'_z)$, then either y and y' have either no common neighbors or exactly q^{n-1} common neighbors.

Now let H be the graph whose vertex set is $X \cup Y$ and two vertices are adjacent if and only if they are either both in X or both in Y, and they have no common neighbors. For this to occur, we must be in Case 1, and therefore we must have either $x_z \neq x'_z$ or $y_z \neq y'_z$. Subtracting (4) from (5) shows that the system has no solutions and so x and x' have no common neighbors. Therefore, this graph is $q-1$ regular, as for each fixed vertex there are exactly $q-1$ vertices with a different last coordinate and the same entries on the first n coordinates. Let E be the adjacency matrix of H and note that since H is $q-1$ regular, all of the eigenvalues of E are at most $q-1$ in absolute value. Let J be the q^{n+1} by q^{n+1} all ones matrix. By the above case analysis, it follows that

$$M^2 = q^{n-1} \begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix} + (q^n - q^{n-1})I - q^{n-1}E$$ \hfill (7)

Now let v_2 be an eigenvector of M for λ_2. For a set of vertices Z let χ_Z denote the vector which is 1 if a vertex is in Z and 0 otherwise (ie it is the characteristic vector for Z). Note that since $SP_{Q,n}$ is a regular bipartite graph, we have that $\lambda_1 = q^n$ with corresponding eigenvector $\chi_X + \chi_Y$ and $\lambda_n = -q^n$ with corresponding eigenvector $\chi_X - \chi_Y$. Also note that v_2 is perpendicular to both of these eigenvectors and therefore is also perpendicular to both χ_X and χ_Y. This implies that

$$\begin{pmatrix} J & 0 \\ 0 & J \end{pmatrix} v_2 = 0.$$ \hfill (8)

Now by (7), we have

$$\lambda_2^2 v_2 = (q^n - q^{n-1})v_2 - q^{n-1}Ev_2.$$ \hfill (9)

Therefore $q - 1 - \frac{\lambda_2^2}{q^{n-1}}$ is an eigenvalue of E and is therefore at most $q - 1$ in absolute value, implying that $\lambda_2 \leq 2^{1/2}q^{n/2}$.