Crossing lemma

Take a drawing D of G.
Crossing lemma

Include each vertex in H independently with probability p.
Crossing lemma

Leave all the edges on these vertices. Produce an induced drawing of H.
What is the probability for a given edge to be in the random subgraph H? Options: p, p^2, p^3, p^4.
What is the probability for a given crossing to be in the induced drawing of H? Options: p, p^2, p^3, p^4.
What is the value of $R(2, t)$ for $t > 1$?
Is it true that $R(s, t) \geq R(G, H)$ for any G on s vertices and H on t vertices?
Is it true that $R(H_1, \ldots, H_k)$ is finite for any integer $k > 1$ and finite graphs H_1, \ldots, H_k?
What is the probability that on a given t-element subset of vertices we have a monochromatic clique?

Options: \((\binom{t}{2})^{-1}, 2^{-(\binom{t}{2})}, 2^{1-t^2}, 2^{1-(\binom{t}{2})}, (\binom{n}{t})2^{1-t^2} \).