1. Let \(k \geq 2 \). Show that every \(k \)-connected graph with at least \(2k \) vertices contains a cycle of length at least \(2k \).

If \(G \) is \(k \)-connected, then \(\delta(G) \geq k \), so by Proposition 1.2.2, \(G \) contains a cycle of length at least \(\delta(G) + 1 \geq k \). Let \(C \) be a longest cycle in \(G \), and suppose its length is less than \(2k \). So we have \(k \leq |V(C)| < 2k \). Since \(|V(G)| \geq 2k \), there is a vertex \(x \notin V(C) \).

By Lemma 8.2.2 from the notes (or by a similar application of Menger’s Theorem), and using the fact that \(|V(C)| \geq k \), there are \(k \) paths from \(x \) to \(V(C) \) that are disjoint except for \(x \), with each path containing only one vertex of \(C \). By the pigeonhole principle and the fact that \(|V(C)| < 2k \), there must be two of these paths that end at adjacent vertices \(y, z \) of \(V(C) \). Then replacing the edge \(yz \) in \(C \) by the path from \(y \) to \(x \) to \(z \), we get a new cycle. It is longer, since each of the two paths has at least one edge. This contradicts the choice of \(C \).

2. Show that any two vertices in a 3-connected graph are connected by two internally disjoint paths of different lengths.

Let \(x, y \) be two vertices in a 3-connected graph. There are three internally disjoint paths \(P, Q, R \) between \(x \) and \(y \); if two of them have different lengths we are done, so assume \(P, Q, R \) have the same length \(L \). At most one of them could be a single edge, so we have \(L \geq 2 \). Hence \(V(P) \setminus \{x, y\} \) and \(V(Q) \setminus \{x, y\} \) are not empty.

Let \(p \) and \(q \) be two vertices on two of these paths, not equal to \(x \) or \(y \). There are three internally disjoint paths from \(p \) to \(q \); at least one of these paths does not pass through \(x \) or \(y \). So for any \(p \) from one of \(P, Q, R \), and \(q \) from one of the other two, there is a path between \(p \) and \(q \) that does not pass through \(x \) or \(y \). Let \(S \) be the shortest path between any such \(p \) and \(q \); without loss of generality, \(S \) goes from \(r \in V(P) \setminus \{x, y\} \) to \(s \in V(Q) \setminus \{x, y\} \). By minimality, \(S \) does not contain any vertex of \(P \) or \(Q \) other than \(r \) and \(s \), and \(S \) does not contain any vertex of \(R \).

We now have two new paths from \(x \) to \(y \) that are internally disjoint from \(R \): One goes from \(x \) along \(P \) to \(r \), then along \(S \) to \(s \), and then along \(Q \) to \(y \); the other goes from \(x \) along \(Q \) to \(s \), along \(S \) to \(r \), and along \(P \) to \(y \). The total length of these two paths is \(2L + 2|E(S)| \), so one of the two must have length different from \(L \).

3. Prove that a \(k \)-connected graph \(G \) has \(|E(G)| \geq \frac{1}{2}k|V(G)| \). For even \(k \), find a \(k \)-connected graph \(G \) with \(|E(G)| = \frac{1}{2}k|V(G)| \).

The lower bound follows from \(\delta(G) \geq k \), since \(|E(G)| = \frac{1}{2} \sum d(v) \geq \frac{1}{2}k|V(G)| \).

For the construction, start with a cycle and connect each vertex to the \(k/2 \) nearest neighbors on each side. That gives the right number of edges. To see that it is \(k \)-connected, remove \(k - 1 \) vertices and consider two vertices \(x, y \). One of the two half-cycles between \(x \) and \(y \) has less than \(k/2 \) removed vertices. Then along that half-cycle we can find a path from \(x \) to \(y \), because if we travel in one direction, every vertex has \(k/2 \) neighbors in that direction, not all of which can have been removed.
4. A graph \(G \) is \(k \)-edge-connected if for every \(S \subset E(G) \) of size \(k - 1 \) the graph \(G - S \) is connected. Show that if \(G \) is \(k \)-connected, then \(G \) is \(k \)-edge-connected. Give an example to show that the converse is not true.

Suppose \(G \) is \(k \)-connected, and let \(F \) be a minimal set of edges such that \(G - F \) is disconnected. If some vertex \(v \) of \(G \) is not incident to \(F \), then let \(C \) be the component of \(G - F \) that contains \(v \). Every edge of \(F \) has at most one vertex in \(C \), by minimality of \(F \). Taking all the endpoints of edges of \(F \) that lie in \(C \), we get at most \(|F| \) vertices that disconnect \(v \) from some other vertex. So \(|F| > k - 1 \).

Otherwise, every vertex is incident with an edge of \(F \). For any vertex \(v \), \(N(v) \) disconnects the graph (unless it is complete, in which case it is \(k \)-edge-connected). Every \(w \in N(v) \) is either connected to \(v \) by an edge of \(F \), or is incident to a distinct edge of \(F \) (if for \(w, w' \in N(v) \) we have \(ww' \in F \), it would contradict minimality of \(F \)). So \(k - 1 < |N(v)| \leq |F| \).

Take two complete graphs sharing one vertex. It is highly edge-connected but only \(1 \)-connected.

5. Use Menger’s Theorem to reprove König’s Theorem.

Let \(G \) be a bipartite graph with bipartition \(V(G) = A \cup B \). A matching of size \(m \) corresponds to a set of \(m \) disjoint \(AB \)-paths (in the sense of Menger’s Theorem). A vertex cover corresponds to a set of vertices that cover every original edge, which means that it cuts every \(AB \)-path, so it is an \(AB \)-separator. By Menger’s Theorem, the maximum size of a set of disjoint \(AB \)-paths equals the minimum size of an \(AB \)-separator.

If you prefer the version of Menger with two vertices, add a vertex \(a \) connected to all vertices in \(A \), and a vertex \(b \) connected to all vertices in \(B \). Then a matching corresponds to a set of internally disjoint \(ab \)-paths.

6. Show that in a 3-connected graph, any two longest cycles share at least 3 vertices.

Suppose \(C_1 \) and \(C_2 \) are two longest cycles (it doesn’t matter if we interpret this as both being the same length, or as one being longest and the other second-longest).

If \(C_1 \) and \(C_2 \) are disjoint, then Menger’s Theorem gives three disjoint paths between \(V(C_1) \) and \(V(C_2) \). If \(C_1 \) and \(C_2 \) share exactly one vertex \(x \), then Menger gives two disjoint paths between \(V(C_1) \) and \(V(C_2) \) (not counting the one-vertex path \(x \)). Either way, we have two disjoint paths \(P, Q \) between \(C_1 \) and \(C_2 \); let’s say \(P \) goes from \(p_1 \in V(C_1) \) to \(p_2 \in V(C_2) \), and that \(Q \) goes from \(q_1 \in V(C_1) \) to \(q_2 \in V(C_2) \).

In the case where \(C_1 \) and \(C_2 \) are disjoint, we get a longer cycle by going from \(p_1 \) to \(q_1 \) along the longer part of \(C_1 \), from \(q_1 \) to \(q_2 \) along \(Q \), from \(q_2 \) to \(p_2 \) along the longer part of \(C_2 \), and finally from \(p_2 \) to \(p_1 \) along \(P \).

When \(C_1 \) and \(C_2 \) share one vertex \(x \), this does not work, and we do the following. Let \(C_3 \) be the following cycle: Go from \(p_1 \) to \(q_1 \) along the part of \(C_1 \) not containing \(x \), from \(q_1 \) to \(q_2 \) along \(Q \), from \(q_2 \) to \(p_2 \) along the part of \(C_2 \) containing \(x \), and finally from \(p_2 \) back to \(p_1 \) along \(P \). Let \(C_4 \) be the following cycle: Go from \(p_2 \) to \(q_2 \) along the part of \(C_2 \) not containing \(x \), from \(q_2 \) to \(q_1 \) along \(Q \), from \(q_1 \) to \(p_1 \) along the part of \(C_1 \) containing \(x \), and finally from \(p_1 \) back to \(p_2 \) along \(P \). Now we have \(|E(C_3)| + |E(C_4)| = |E(C_1)| + |E(C_2)| + |E(P)| + |E(Q)| \), so one of \(C_3, C_4 \) is longer than \(C_1 \) or \(C_2 \).

Now suppose \(C_1 \) and \(C_2 \) share exactly two vertices. Menger gives one path \(P \) from \(V(C_1) \) to \(V(C_2) \). We won’t spell it out, but again we can find two new cycles \(C_3, C_4 \) with \(|E(C_3)| + |E(C_4)| = |E(C_1)| + |E(C_2)| + |E(P)| \), which shows that one of \(C_3, C_4 \) must be longer than \(C_1 \) or \(C_2 \).
*7. Prove that a graph G with $|E(G)| \geq 2k|V(G)|$ contains a k-connected subgraph.

We use induction on $|V(G)|$ with the following strengthened induction claim:

If $|V(G)| \geq 2k$ and $|E(G)| \geq 2k|V(G)| - 2k^2$, then G has a k-connected subgraph.

This finishes the problem, since if $|E(G)| \geq 2k|V(G)|$, then $\binom{|V(G)|}{2} \geq 2k|V(G)|$, which implies $|V(G)| \geq 4k + 1 > 2k$, so the induction claim applies.

First note that if $|V(G)| = 2k$, then $2k|V(G)| - 2k^2 = 2k^2 > \binom{2k}{2} = \binom{|V(G)|}{2}$, so we cannot have this many edges, and the claim trivially holds. So suppose we have G with $|V(G)| > 2k$ and $|E(G)| \geq 2k|V(G)| - 2k^2$.

If G has a vertex v of degree less than $2k$, then we can remove v and apply induction, since

$$|E(G - v)| > |E(G)| - 2k \geq 2k|V(G)| - 2k^2 - 2k = 2k(|V(G)| - 1) - 2k^2 = 2k|V(G - v)| - 2k^2.$$

Thus we can assume that every vertex of G has degree at least $2k$.

If G is k-connected, then we are done. Otherwise, there is a set X with $|X| = k - 1$ that disconnects G. Thus we can get two subgraphs G_1 and G_2 with $V(G_1) \cup V(G_2) = V(G)$, $V(G_1) \cap V(G_2) = X$, and $E(G_1) \cup E(G_2) = E(G)$. For instance, let G_1 be the union of X with a component of $G - X$, and let G_2 be the union of X with the other components of $G - X$.

Since each G_i contains a vertex not in X, and that vertex has degree at least $2k$, we have $|V(G_i)| \geq 2k$ for both i. We cannot have $|E(G_i)| < 2k|V(G_i)| - 2k^2$ for both i, since then

$$|E(G)| \leq |E(G_1)| + |E(G_2)| < (2k|V(G_1)| - 2k^2) + (2k|V(G_2)| - 2k^2) = 2k(|V(G_1)| + |V(G_2)| - 2k) = 2k(|V(G)| + k - 1 - 2k) < 2k|V(G)| - 2k^2.$$

Thus the induction claim applies to at least one of the G_i, which gives a k-connected subgraph.