1. Prove that a k-regular bipartite graph (with \(k \geq 1 \)) has a perfect matching.

Let \(G \) be a k-regular bipartite graph with bipartition \(V(G) = A \cup B \). First note that \(|A| = |B| \), since
\[
|A| = \sum_{a \in A} \deg(a) = |E| = \sum_{b \in B} \deg(b) = |B|.
\]

Using Hall’s Theorem: Hall’s Theorem tells us there is matching that matches \(A \) if \(|N(S)| \geq |S| \) for all \(S \subseteq A \). The number of edges from \(S \) to \(N(S) \) is \(k|S| \), and this is the most the number of edges from \(N(S) \) to \(A \), which is \(k|N(S)| \). So we have \(k|S| \leq k|N(S)| \), which implies \(|N(S)| \geq |S| \).

Using König’s Theorem: We observe that any vertex cover \(C \) has at least \(|A| \) vertices, since each vertex of \(C \) covers exactly \(k \) of the \(k|A| \) edges. Then König’s Theorem tells us that a maximum matching has at least \(|A| \) edges, which is only possible if it has exactly \(|A| = |B| \) edges, so is perfect.

2. Show that a tree has at most one perfect matching.

We use induction on \(|V(T)| \). For \(|V(T)| \leq 2 \) the statement is trivial. Let \(T \) be a tree on at least 3 vertices. By a lemma from class, \(T \) has a leaf \(u \), attached to some vertex \(v \). Any perfect matching of \(T \) must contain \(uv \), since that is the only way to match \(u \). Let \(F \) the graph obtained by removing \(u, v \) and every incident edge; \(F \) is a forest. Each connected component of \(F \) is a tree, so by induction has at most one matching, which implies that \(F \) has at most one matching. Any matching of \(T \) must consist of the edge \(uv \) and a matching of \(F \), so it follows that \(T \) has at most one matching.

Alternative solution: Suppose a tree has two perfect matchings, \(M \) and \(M’ \). Consider the symmetric difference \(M \triangle M’ \) as a subgraph \(D \) on \(V(T) \). Every vertex has degree 0 or 2 in \(D \), so \(D \) must be a union of cycles and isolated vertices (by a problem from Problem Set 1). But a tree contains no cycles, so \(D \) only consists of isolated vertices. That implies that \(M \) and \(M’ \) are the same.

3. Show that a maximal matching is at least half the size of a maximum matching.

Let \(M \) be a maximal matching and \(N \) a maximum matching. Suppose \(|M| < |N|/2 \). Then the number of vertices in edges of \(M \) is strictly less than the number of edges in \(N \), so there must be an edge \(e \in N \) with neither endpoint in an edge of \(M \). But then we could add \(e \) to \(M \), contrary to it being maximal.

4. Prove that any bipartite graph \(G \) has a matching of size at least \(|E(G)|/\Delta(G) \).

By König’s Theorem, it suffices to prove that a vertex cover of \(G \) cannot have fewer than \(|E(G)|/\Delta(G) \) vertices. This follows directly from the fact that every vertex covers at most \(\Delta(G) \) edges.

5. Show that a bipartite graph \(G \) has a perfect matching if and only if its largest independent set has size \(|V(G)|/2 \) (i.e., a subset of \(|V(G)|/2 \) vertices, no two of which are adjacent).

By König’s Theorem, \(G \) has a perfect matching if and only if its minimum vertex cover has size \(|V(G)|/2 \). Note that \(C \subset V(G) \) is a vertex cover if and only if \(V(G) \setminus C \) is independent. Thus if \(c \) is the size of a minimum vertex cover, then \(|V(G)| - c \) is the size of a maximum independent set. Combining these statements proves the claim.
6. Show that if G is a bipartite graph with $|N(S)| \geq |S| - d$ for all $S \subset V(G)$, then G has a matching with $\frac{1}{2}|V(G)| - d$ edges.

Let $V(G) = A \cup B$ be a bipartition of G, with $|A| \geq |B|$. Add d new vertices to B, each connected to all vertices in A; let G' be the new graph. Then G' has $|N_{G'}(S)| \geq |S|$ for every $S \subset A$ (S has at least $|S| - d$ neighbors from G, and is connected to the d new vertices). By Hall's Theorem, G' has a matching for A, which has $|A| \geq (|A| + |B|)/2 = |V(G)|/2$ edges. At most d of these edges contain a new vertex of G', which leaves at least $|V(G)|/2 - d$ edges from G.

7. An $r \times s$ Latin rectangle is an $r \times s$ matrix A with entries in $\{1, \ldots, s\}$ such that each integer occurs at most once in each row and at most once in each column. An $s \times s$ Latin rectangle is called a Latin square. Prove that every $r \times s$ Latin rectangle can be extended to an $s \times s$ Latin square.

Define a bipartite graph whose vertex set consists of two copies of $\{1, \ldots, s\}$, call them S_1 and S_2. We connect $i \in S_1$ with $j \in S_2$ if the i-th column of the $r \times s$ Latin rectangle does not contain the number j. What we are looking for is a matching that matches S_1, since then we can put numbers on row $r + 1$ such that no number is repeated in that row, and no number is repeated in a column.

To see if such a matching exists we use Hall’s Theorem, or more specifically Problem 1 above. A column $i \in S_1$ contains r distinct numbers, so there are $s - r$ numbers that it does not contain. That means that the vertex $i \in S_1$ has degree $s - r$. On the other hand, a number $j \in S_2$ occurs exactly once in each of the r rows, and at most once in any of the s columns. Hence there are $s - r$ columns that do not contain j, so the degree of $j \in S_2$ is $s - r$. Therefore, the graph is $(s - r)$-regular, so by Problem 1, there is a perfect matching.

8. Consider the following game on a bipartite graph G. Player 1 picks any vertex v_1. Player 2 then has to pick v_2 to be a neighbor of v_1 that was not picked before, then Player 1 picks v_3 to be a neighbor of v_2 that was not picked before, etc. Thus the players build a path $v_1v_2v_3 \cdots$. The last player that is able to pick a vertex is the winner.

Prove that Player 2 has a winning strategy if G has a perfect matching, while otherwise Player 1 has a winning strategy.

If G has a perfect matching M, then Player 2 can use the following strategy. If Player 1 picks vertex u, Player 2 picks the other endpoint of the edge of M that matches u. By the definition of a perfect matching, Player 2 can always choose in this way. Because the matching is perfect, Player 2 will be the last to pick. So this is a winning strategy.

If G does not have a perfect matching, then Player 1 can use the following strategy. Let M be a maximum matching. Player 1 picks a vertex u that is unmatched by M. Whichever neighbor v Player 2 picks, it must be matched by some edge of M, since otherwise uv could be added to M. Then Player 1 picks the other endpoint of the edge that matches v. Continue like this. Player 1 always picks the other endpoint of the edge that matches the choice of Player 2. This is always possible, because if the vertex chosen by Player 2 were unmatched, there would be an augmenting path for M, which is not possible since M is maximum.
*9. Prove the following statement using Hall’s Theorem (and really using it). Let X be a finite set and S a set of subsets of X, such that there are no distinct $S, T \in S$ with $S \subset T$. Then

$$|S| \leq \left(\frac{|X|}{\lfloor |X|/2 \rfloor} \right).$$

Let $\mathcal{P}(X)$ be the set of all subsets of X, and write $\mathcal{P}_k(X)$ for the set of all subset of X with k elements. We view $\mathcal{P}(X)$ as a graph, with an edge between S and T if $|S \Delta T| = 1$ (in other words, one set is the other plus another element).

Consider $\mathcal{P}_k(X)$ and $\mathcal{P}_{k+1}(X)$ for some $k < |X|/2$. They form a bipartite graph, with an edge between $S \in \mathcal{P}_k(X)$ and $T \in \mathcal{P}_{k+1}(X)$ if $S \subset T$. By Hall’s Theorem, this graph has a matching that matches $\mathcal{P}_k(X)$ if for every $U \subseteq \mathcal{P}_k(X)$ we have $|N(U)| \geq |U|$. To check this, we double count as follows. A set $S \in \mathcal{P}_k(X)$ is adjacent to $|X| - k$ sets $T \in \mathcal{P}_{k+1}(X)$, one for each element not in S. On the other hand, a set $T \in \mathcal{P}_{k+1}(X)$ is adjacent to $k + 1$ sets $S \in \mathcal{P}_k(X)$, one for each element in T. This gives

$$|(X| - k)|U| \leq (k + 1)|N(U)| \implies |N(U)| \geq \frac{|X| - k}{k + 1}|U|.
$$

For $k < |X|/2$, the fraction is at least 1, which verifies Hall’s condition. We can do the same thing for $k > |X|/2$, which gives a matching from $\mathcal{P}_{k+1}(X)$ to $\mathcal{P}_k(X)$.

Combining the edges of all these matchings gives a subgraph whose connected components are disjoint paths. Every vertex of $\mathcal{P}(X)$ is in one of these paths, and each path contains a vertex in $\mathcal{P}_{\lfloor |X|/2 \rfloor}(X)$, so there are exactly $\left(\frac{|X|}{\lfloor |X|/2 \rfloor} \right)$ paths. The paths have the property that for any edge ST of a path, we have $S \subset T$ or $T \subset S$. Hence the set S from the question contains at most one set from each path, which implies that $|S| \leq \left(\frac{|X|}{\lfloor |X|/2 \rfloor} \right)$.

Note: This statement is known as Sperner’s Theorem and has many different proofs.

*10. Deduce Hall’s Theorem from König’s Theorem, and deduce König’s Theorem from Hall’s Theorem. (For both theorems, your proof should really use the other theorem to obtain a relatively simple proof.)

Hall from König: Suppose there is no matching that matches A. Then by König’s Theorem there is a vertex cover C with $|C| < |A|$ vertices. Consider $C \cap A$ and $C \cap B$. There is no edge between $A \setminus C$ and $B \setminus C$, so $N(A \setminus C) \subset C \cap B$. But then

$$|N(A \setminus C)| \leq |C \cap B| = |C| - |C \cap A| < |A| - |C \cap A| = |A \setminus C|,$$

which violates Hall’s condition.

König from Hall: Let C be a minimum cover; we show that G has a matching of size $|C|$. Again consider $C \cap A$ and $C \cap B$. Since there are no edges between $A \setminus C$ and $B \setminus C$, every edge either goes from $C \cap A$ to B or from $C \cap B$ to A. We can define two disjoint bipartite subgraphs of G, a graph H_1 with vertex sets $C \cap A$ and $B \setminus C$, and a graph H_2 with vertex sets $C \cap B$ and $A \setminus C$. We will show that H_1 has a matching that matches $C \cap A$ and H_2 has a matching that matches $C \cap B$, so these combine into a matching of size $|C|$, which finishes the proof.

Consider H_1 and let $D \subset C \cap A$. If $|N_{H_1}(D)| < |D|$, then we could replace $D \subset C$ by $N_{H_1}(D)$ to get a smaller vertex cover, contradicting C being minimum. Indeed, if an edge e is covered by $v \in D$, then either it is in H_1 and also covered by a vertex in N_{H_1}, or it is not in H_1 and incident to a vertex in $C \cap B$, so it is covered anyway. Thus Hall’s condition holds for H_1 and there is a matching in it that matches $C \cap A$. Similarly, we get a matching in H_2 that matches $C \cap B$.