1. Determine $R(P_3, P_3)$ and $R(K_{1,3}, K_3)$.
 - $R(P_3, P_3) = 5$: Let K_5 be 2-colored. Pick a vertex x_0. One color occurs at least twice at x_0, say it is red, and x_0x_1, x_0x_2 are red. If any of the edges from x_1, x_2 to the other two vertices x_3, x_4 is red, then we get a red P_3. Otherwise, for instance the path $x_1x_3x_2x_4$ is blue.
 For the lower bound, color K_4 with one triangle red, and the other three edges blue.
 - $R(K_{1,3}, K_3) = 7$: Let K_7 be colored red and blue. Pick a vertex x_0. If it has three red edges, we have a red $K_{1,3}$. Otherwise, x_0 has at least four blue edges $x_0x_1, x_0x_2, x_0x_3, x_0x_4$. If any edge between x_1, x_2, x_3, x_4 is blue, we get a blue K_3. Otherwise, x_1, x_2, x_3, x_4 form a red K_4, which contains a red $K_{1,3}$.
 To prove $R(K_{1,3}, K_3) > 6$, color K_6 so that the red edges form two red disjoint red triangles (so no red $K_{1,3}$), and the remaining edges are blue, which means they form a $K_{3,3}$ (so no blue K_3).

2. Show that any 2-coloring of the edges of K_6 contains at least two monochromatic triangles.
 There is one monochromatic triangle, say $x_1x_2x_3$ is red. Let x_4, x_5, x_6 be the other vertices. If the triangle $x_4x_5x_6$ is red, we are done, so we can assume that x_4x_5 is blue. If among the three edges from x_4 to x_1, x_2, x_3 there are two red edges, we would get a second red triangle, so we can assume that there are two blue edges from x_4 to x_1, x_2, x_3. Similarly, we can assume there are two blue edges from x_5 to x_1, x_2, x_3. Then there must be a blue edge from x_4 and a blue edge from x_5 that go the same vertex among x_1, x_2, x_3. This gives a blue triangle.

3. Show that there exists an N such that if the integer box $\{(x, y) : 1 \leq x, y \leq N\}$ is 2-colored, then there is a monochromatic rectangle, i.e. a rectangle with all four corners the same color.
 We claim that $N = 5$ works. Suppose that we have a coloring of the 5×5 box without a monochromatic rectangle. There must be points $(x_1, 1), (x_2, 1)$, and $(x_3, 1)$ that all have the same color, say red.
 For each i, at most one other point of the form (x_i, y) can be red. Indeed, suppose that for instance (x_1, y_1) and (x_1, y_2) are red, with $y_1, y_2 > 1$. Then each of the points $(x_2, y_1), (x_2, y_2), (x_3, y_1), (x_3, y_2)$ must be blue, or we’d get a red rectangle. But then these form a blue rectangle.
 Therefore, each of $(x_1, 1), (x_2, 1), (x_3, 1)$ has at least three blue points above it. Then there are two blue points above $(x_1, 1)$ which are at the same height as two blue points above $(x_2, 1)$, so they form a blue rectangle.
 For $N = 4$ it is not hard to construct a coloring without a monochromatic rectangle.

4. Prove that every 2-coloring of K_n contains a monochromatic spanning tree.
 Pick a vertex x. If all edges of x are red, they form a red spanning tree. Otherwise, x has a red edge xy and a blue edge xz. Apply induction to find a monochromatic spanning tree in $G - x$. If it is red, add xy, and if it is blue, add xz.

5. Let \(T \) be a tree with \(t \) vertices. Prove that \(R(K_s, T) = (s - 1)(t - 1) + 1 \).

Color \(K_{(s-1)(t-1)+1} \) with red and blue. If every vertex has blue degree at least \(t - 1 \), then by a lemma from Lecture 10, there is a blue \(T \). Otherwise, there is a vertex \(x \) with blue degree at most \(t - 2 \), so red degree at least \((s - 1)(t - 1) + 1 - (t - 2) > (s - 2)(t - 1) + 1 \). Let \(H \) be the 2-colored complete subgraph on the at least \((s - 2)(t - 1) + 1 \) vertices that are connected to \(x \) by a red edge. By induction, \(H \) has a red \(K_{s-1} \) or a blue \(T \). The red \(K_{s-1} \) would give a red \(K_s \) in the whole graph.

*6. Determine \(R(K_3, K_{2,2}) \) and \(R(K_{2,2}, K_{2,2}) \).

*7. Let \(2K_3 \) be the graph consisting of two disjoint triangles. Prove that \(R(2K_3, 2K_3) = 10 \).