Lecture 1

Introduction

1 **Definitions**

Definition. A graph $G = (V, E)$ consists of a finite set V and a set E of two-element subsets of V. The elements of V are called vertices and the elements of E are called edges.

For instance, very formally we can introduce a graph like this:

$$V = \{1, 2, 3, 4\}, \quad E = \{\{1, 2\}, \{3, 4\}, \{2, 3\}, \{2, 4\}\}.$$

In practice we more often think of a drawing like this:

Technically, this is what is called a *labelled graph*, but we often omit the labels. When we say something about an unlabelled graph like \overline{G}, we mean that the statement holds for any labelling of the vertices.

Here are two examples of related objects that we do not consider graphs in this course:
The first is a multigraph, which can have multiple edges and loops; the corresponding definition would allow the edge set and the edges to be multisets. The second is a directed graph, in which every edge has a direction; in the corresponding definition the edges would be ordered pairs instead of two-element subsets.

Although this course is mostly not about these variants, in some cases it will be more natural to state our results for directed or multigraphs. In any case, we will not treat infinite graphs in this course.

Graphs (and their above-mentioned variants) are highly applicable in- and outside mathematics because they provide a simple way of modeling many concepts involving connections between objects. For example, graphs can model social networks (vertices=people & edges=friendships), computer networks (computers & links), molecules (atoms & bonds) and many other things. The aim of this course is to study graphs in the abstract sense, and to introduce the fundamental concepts, tools, tricks and results about them.

Some notation: Given a graph \(G \), we write \(V(G) \) for the vertex set, and \(E(G) \) for the edge set. For an edge \(\{x, y\} \in E(G) \), we usually write \(xy \), and we consider \(yx \) to be the same edge. If \(xy \in E(G) \), then we say that \(x, y \in V(G) \) are adjacent or connected or that they are neighbors. If \(x \in e \), then we say that \(x \in V(G) \) and \(e \in E(G) \) are incident.

Definition (Subgraphs). Two graphs \(G, G' \) are isomorphic if there is a bijection \(\varphi : V(G) \to V(G') \) such that \(xy \in E(G) \) if and only if \(\varphi(x)\varphi(y) \in E(G') \). A graph \(H \) is a subgraph of a graph \(G \), denoted \(H \subseteq G \), if there is a graph \(H' \) isomorphic to \(H \) such that \(V(H') \subseteq V(G) \) and \(E(H') \subseteq E(G) \).

With this definition we can for instance say that \(\Xi \) is a subgraph of \(\Xi \). As mentioned above, when we talk about graphs we often omit the labels of the vertices. A more formal way of doing this is to define an unlabelled graph to be an isomorphism class of labelled graphs. We will be somewhat informal about this distinction, since it rarely leads to confusion.

Definition (Degree). Fix a graph \(G = (V, E) \). For \(v \in V \), we write \(N(v) = \{w \in V : vw \in E\} \) for the set of neighbors of \(v \) (which does not include \(v \)). Then \(d(v) = |N(v)| \) is the degree of \(v \). We write \(\delta(G) \) for the minimum degree of a vertex in \(G \), and \(\Delta(G) \) for the maximum degree.

Definition (Examples). The following are some of the most common types of graphs.

- **Paths** are the graphs \(P_n \) of the form \(\rightarrow \ldots \rightarrow \). The graph \(P_n \) has \(n - 1 \) edges and \(n \) different vertices; we say that \(P_n \) has length \(n - 1 \).

- **Cycles** are the graphs \(C_n \) of the form \(\ldots \rightarrow \). The graph \(C_n \) has \(n \) edges and \(n \) different vertices; the length of \(C_n \) is defined to be \(n \).

- **Complete graphs** (or cliques) are the graphs \(K_n \) on \(n \) vertices in which all vertices are adjacent. The graph \(K_n \) has \(\binom{n}{2} \) edges. For instance, \(K_4 \) is \(\Xi \).

- **The complete bipartite graphs** are the graphs \(K_{s,t} \) with a partition \(V(K_{s,t}) = X \cup Y \) with \(|X| = s, |Y| = t \), such that every vertex of \(X \) is adjacent to every vertex of \(Y \), and there are no edges inside \(X \) or \(Y \). Then \(K_{s,t} \) has \(st \) edges. For example, \(K_{2,3} \) is \(\Xi \).

The following are the most common properties of graphs that we will consider.
Definition (Bipartite). A graph \(G \) is bipartite if there is a partition \(V(G) = X \cup Y \) such that every edge of \(G \) has one vertex in \(X \) and one in \(Y \); we call such a partition a bipartition.

Definition (Connected). A graph \(G \) is connected if for all \(x, y \in V(G) \) there is a path in \(G \) from \(x \) to \(y \) (more formally, there is a path \(P_k \) which is a subgraph of \(G \) and whose endpoints are \(x \) and \(y \)).

A connected component of \(G \) is a maximal connected subgraph of \(G \) (i.e., a connected subgraph that is not contained in any larger connected subgraph). The connected components of \(G \) form a partition of \(V(G) \).

2 Basic Facts

In this section we prove some basic facts about graphs. It is a somewhat arbitrary collection of statements, but we introduce them here to get used to the terminology and to see some typical proof techniques.

Proposition 1.1. In any graph \(G \) we have \(\sum_{v \in V(G)} d(v) = 2|E(G)|. \)

Proof. We count the number of pairs \((v, e) \in V(G) \times E(G)\) such that \(v \in e \), in two different ways. On the one hand, a vertex \(v \) is involved in \(d(v) \) such pairs, so the total number of such pairs is \(\sum_{v \in V(G)} d(v) \). On the other hand, every edge is involved in two such pairs, so the number of pairs must equal \(2|E(G)|. \) □

What we used here is a very powerful proof technique in combinatorics, called double counting. The lemma itself is sometimes called the “handshake lemma” because it says that at a party the number of shaken hands is twice the number of handshakes. It has useful corollaries, such as the fact that the number of odd-degree vertices in a graph must be even.

Next, we will describe a very important characterization of bipartite graphs. But first, we need two more definitions.

Definition (Walk). A walk is a sequence \(v_1e_1v_2e_2\ldots v_k \) of (not necessarily distinct) vertices \(v_i \) and edges \(e_i \) such that \(e_i = v_iv_{i+1} \). A closed walk is a walk with \(v_1 = v_k \). The length of this walk is the number of edges, \(k - 1 \).

It is easy to see that paths are exactly walks with no repeating vertices, and cycles are exactly closed walks with no repeating vertices apart from \(v_1 = v_k \).

Definition (Distance). The distance \(d(u, v) \) of two vertices \(u, v \in V(G) \) is the length of the shortest path (or walk) in \(G \) from \(u \) to \(v \). (If there is no \(u-v \) path in \(G \) then \(d(u, v) = \infty \).)

Now we are ready to prove the characterization. Note that “contains a cycle” means that the graph has a subgraph that is isomorphic to some \(C_n \), and similarly for paths. An “odd cycle” is just a cycle whose length is odd.

Theorem 1.2. A graph is bipartite if and only if it contains no odd cycle.

Proof. To prove the easy direction of the statement, suppose that \(G \) is bipartite with bipartition \(V(G) = X \cup Y \), and let \(v_1\ldots v_kv_1 \) be a cycle in \(G \) with, say, \(v_1 \in X \). We must have \(v_i \in X \) for all odd \(i \) and \(v_i \in Y \) for all even \(i \). Since \(v_k \) is adjacent to \(v_1 \), it must be in \(Y \), so \(k \) must be even and the cycle is not odd.

Now for the other direction, suppose \(G \) has no odd cycles. We may assume that \(G \) is connected. Indeed, otherwise we can apply the same argument to each connected component.
G_i of G to get a bipartition X_i ∪ Y_i of G_i. Choosing X = ∪_i X_i and Y = ∪_i Y_i will then give a bipartition of G.

So if v is a fixed vertex, then every other vertex u ∈ V(G) has finite distance from v. Let

\[X = \{ u : \text{distance of } v \text{ and } u \text{ is even} \} \]
\[Y = \{ u : \text{distance of } v \text{ and } u \text{ is odd} \}. \]

Our aim is to prove that this is a bipartition of G. For this, we need to check that no two vertices in X are adjacent and no two vertices in Y are adjacent.

Suppose for contradiction that some two vertices u_1, u_2 ∈ X are adjacent, and let e be the edge u_1u_2. By construction, there are paths P_1 from v to u_1 and P_2 from u_2 to v that both have even lengths. But then joining P_1, P_2 and the edge e gives a closed walk P_1eP_2 of odd length, so by Claim 1.3 below, G contains an odd cycle, as well, contradiction the assumption. (Note that P_1eP_2 is not necessarily a cycle because P_1 and P_2 might intersect!)

We can do the same to show that no two vertices u_1, u_2 ∈ Y are adjacent: here the paths P_1, P_2 will both have odd lengths, so again P_1eP_2 is a closed odd walk. So X ∪ Y is indeed a bipartition of G.

The proof above is a constructive argument, where we explicitly constructed the object we were looking for (and then proved that it satisfies the required properties). Of course, we still need to prove the following lemma to complete the proof. We use an inductive argument.

Claim 1.3. Every closed walk of odd length contains an odd cycle.

Proof. We apply induction on the length k of the walk. Since there is no closed walk of length 1, the statement is vacuously true for k = 1. We could use this as the base case, but it is also easy to see that the only closed walk of length 3 is the triangle (K_3), which itself is an odd cycle.

Now suppose the statement is true for every odd length < k, and let W = v_1e_1v_2...v_{k+1} be a closed walk of odd length k. Let j be the smallest index such that v_i = v_j for some i < j. We have two cases. If j − i is even, then deleting the j − i edges e_i, ..., e_{j−1} from W yields another closed walk W' ⊆ W of odd length. Applying induction on W' then gives an odd cycle in W' and hence in W.

On the other hand, if j − i is odd (and it cannot be 1, so j − i ≥ 3), then the j − i edges e_i, ..., e_{j−1} form an odd cycle. Indeed, they form an odd walk without repeated vertices by the choice of v_j. This is what we were looking for.

The next lemma shows that if all degrees of a graph are large, then it must contain a long path. The proof is an example of an extremal argument, where we take an object that is extremal with respect to some property, and show that this extremality implies some other property of the object.

Proposition 1.4. A graph G with minimum degree δ(G) contains a path of length at least δ(G).

Proof. Let v_1...v_k be a maximal path in G, i.e., a path that cannot be extended. Then any neighbor of v_1 must be on the path, since otherwise we could extend it. Since v_1 has at least δ(G) neighbors, the set \{v_2, ..., v_k\} must contain at least δ(G) elements. Hence k ≥ δ(G) + 1, so the path has length at least δ(G).

Note that in general this bound cannot be improved, because K_δ+1 has minimum degree δ, but its longest path has length δ. In problem set 1, we will prove an analogous statement for cycles.
1 More basic facts

The following lemma can be helpful when trying to prove certain statements for general graphs that are easier to prove for bipartite graphs. The lemma says that you don’t have to remove more than half the edges of a graph to make it bipartite. The proof is an example of an algorithmic proof, where we prove the existence of an object by giving an algorithm that constructs such an object.

Proposition 2.5. Any graph G contains a bipartite subgraph H with $|E(H)| \geq |E(G)|/2$.

Proof. We prove the stronger claim that G has a bipartite subgraph H with $V(H) = V(G)$ and $d_H(v) \geq d_G(v)/2$ for all $v \in V(G)$. Starting with an arbitrary partition $V(G) = X \cup Y$ (which need not be a bipartition for G), we apply the following procedure. We refer to X and Y as “parts”. For any $v \in V(G)$, we see if it has more edges to X or to Y; if it has more edges that connect it to the part it is in than it has edges to the other part, then we move it to the other part. We repeat this until there are no more vertices v that should be moved.

There are at most $|V(G)|$ consecutive steps in which no vertex is moved, since if none of the vertices can be moved, then we are done. When we move a vertex from one part to the other, we increase the number of edges between X and Y (note that a vertex may move back and forth between X and Y, but still the total number of edges between X and Y increases in every step). It follows that this procedure terminates, since there are only finitely many edges in the graph. When it has terminated, every vertex in X has at least half its edges going to Y, and similarly every vertex in Y has at least half its edges going to X. Thus the graph H with $V(H) = V(G)$ and $E(H) = \{xy \in E(G) : x \in X, y \in Y\}$ has the claimed property that $d_H(v) \geq d_G(v)/2$ for all $v \in V(G)$. □

We have seen in Proposition 1.4 that it is sometimes useful if our graph has large minimum degree. The next statement shows that every graph with sufficiently many edges must contain a subgraph with large minimum degree. We give an inductive proof, although it could also be proved using an algorithmic argument.

Proposition 2.6. Let G be a non-empty graph on n vertices with at least dn edges. Then G contains a subgraph H with $\delta(H) > d$.

Proof. First of all, we may assume that d is an integer, for otherwise we could replace d with $[d]$ and apply the same result. So let d be a fixed integer. If $d = 0$ then we can take H to be an edge of G (because G is non-empty), so we may further assume $d > 0$.

We now proceed by induction on n. Note that $n \leq 2d$ is impossible because such a graph has at most $n(n-1)/2 < nd$ edges. Also, for $n = 2d + 1$ the only graph with nd edges is $K_n = K_{2d+1}$, which has minimum degree $2d$, so we can take $H = G$.

Now suppose $n > 2d + 1$. If $\delta(G) > d$ then we can take $H = G$. Otherwise, there is a vertex v of degree $d(v) \leq d$. Let $G' = G - v$ be the subgraph we obtain from G by deleting v and all the edges touching it. Then G' has $n - 1$ vertices and at least $nd - d = (n - 1)d$ edges, so by induction, there is a subgraph $H \subseteq G' \subseteq G$ such that $\delta(H) > d$. □

The following is an easy but important fact. Its proof is extremal.
Proposition 2.7. Every \(u \)-\(v \) walk \(W \) contains a \(u \)-\(v \) path.

Proof. Let \(v_1v_2\ldots v_k \) be a shortest \(u \)-\(v \) walk in \(W \) (more precisely, in the graph defined by the edges of \(W \)), so \(u = v_1 \) and \(v = v_k \). We claim that this walk is in fact a path. Indeed, if \(v_i = v_j \) for some \(i < j \), then \(v_1v_2\ldots v_iv_{j+1}\ldots v_k \) is also a \(u \)-\(v \) walk, and it is shorter (has fewer edges), which is not possible. So the shortest walk has no repeated vertices, i.e., it is a path.

This fact has the useful corollaries that we can replace paths with walks in some of our definitions:

- The distance \(d(u, v) \) is equal to the length of the shortest \(u \)-\(v \) walk.
- A graph is connected if and only if every pair of vertices \(u, v \) is connected by a walk.

The latter connectivity property is sometimes easier to check. Also, it clearly implies that connectivity is an equivalence relation.

Our last basic result gives a connection between the number of edges and the number of connected components in a graph.

Proposition 2.8. If a graph \(G \) has \(n \) vertices and \(k \) edges, then it has at least \(n - k \) components.

Proof. Let us start with the empty graph and add the edges of \(G \) to it one-by-one. At the beginning there are \(n \) vertices and no edges, so we have \(n \) components. Each added edge touches at most 2 of the components, and joins these components if they are different (an edge within a component does not affect any components). This means that adding an edge decreases the number of components by at most 1. Adding \(k \) edges therefore decreases the number of components by at most \(k \), so after adding all \(k \) edges of \(G \), we are left with at least \(n - k \) of them.

Corollary 2.9. Every connected graph on \(n \) vertices has at least \(n - 1 \) edges.

2 Trees

Definition. A tree is a connected graph without cycles. A forest is a graph without cycles. In a tree or a forest, a vertex of degree one is called a leaf.

Lemma 2.10. Every tree with at least two vertices has a leaf.

Proof. Take a longest path \(v_0v_1\ldots v_k \) in the tree (so \(k \geq 1 \), since the tree has at least two vertices). A neighbor of \(v_0 \) cannot be outside the path, since then the path could be extended. But if \(v_0 \) were adjacent to \(v_i \) for some \(i > 1 \), then \(v_0v_1\ldots v_iv_0 \) would be a cycle. So the only neighbor of \(v_0 \) is \(v_1 \), and \(v_0 \) is a leaf. The same argument shows that \(v_k \) is also a leaf.

Theorem 2.11. Any tree \(T \) on \(n \) vertices has \(n - 1 \) edges.

Proof. We use induction on the number of vertices. If \(n = 1 \), then we have 0 edges. Otherwise, Proposition 2.10 gives a leaf \(v \) of \(T \). Let \(T' = T - v \) be the graph obtained by removing \(v \) and its only edge. Then \(T' \) is connected, since for any \(x, y \in V(T') \) there is a path from \(x \) to \(y \) in \(T' \), and this path cannot pass through \(v \), so it is also a path in \(T' \). Since \(T \) has no cycles, neither does \(T' \), so \(T' \) is a tree, on \(n - 1 \) vertices. By induction \(T' \) has \(n - 2 \) edges, so, using \(|E(T')| = |E(T)| - 1\), we see that \(T \) has \(n - 1 \) edges.
Theorem 2.12. A graph G is a tree if and only if for all $u, v \in V(G)$ there is a unique path from u to v.

Proof. First suppose we have a graph G in which any two vertices are connected by a unique path. Then G is certainly connected. Moreover, if G contained a cycle $v_1 v_2 \cdots v_k v_1$, then $v_1 v_k$ and $v_1 v_2 \cdots v_k$ would be two distinct paths between v_1 and v_k. Hence G is a tree.

Suppose G is a tree and $u, v \in V(G)$. Since G is connected, there is at least one path from u to v. Suppose there are two distinct paths P, P' from u to v. If these paths only intersect at u and v, we can immediately combine them into a cycle, but in general the paths could intersect in a complicated way, so we have to be careful. The paths P and P' could start out from u being the same; let x be the first vertex that they leave at different edges (so their next vertices are different). Let y be the first vertex of P after x that is also contained in P'. Then there is a cycle in G that goes along P from x to y, and then back along P' from y to x. This is a contradiction, so there is a unique path from u to v in G. \qed

3 Breadth-first search

Definition. A spanning tree of a graph G is a subgraph $T \subseteq G$, which is a tree with $V(T) = V(G)$.

Our aim is to show that

Theorem 2.13. Every connected graph has a spanning tree.

Our proof method is to provide and algorithm called breadth-first search (BFS) that finds a spanning tree (the breadth-first search tree) with some special properties. This algorithm will even let us answer various natural questions, like determining the distance between two vertices.

The algorithm starts with a vertex r that we refer to as the root of the spanning tree, and it will gradually extend the tree T by examining the edges of G leaving the current T. We use $\partial(T)$ to denote this set of “leaving” edges. More precisely, given a graph G and a subgraph $H \subset G$, we define

$$\partial(H) = \{xy \in E(G) : x \in V(H), y \not\in V(H)\}$$

for the set of edges going from vertices of H to vertices not in H.

<table>
<thead>
<tr>
<th>BFS Algorithm (given a graph G and a root $r \in V(G)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Let T be the graph consisting only of r;</td>
</tr>
<tr>
<td>2. Iterate:</td>
</tr>
<tr>
<td>(a) If $\partial(T) = \emptyset$, then go to (3);</td>
</tr>
<tr>
<td>(b) For all $xy \in \partial(T)$, if $T + xy$ does not contain a cycle, replace T by $T + xy$;</td>
</tr>
<tr>
<td>3. If $</td>
</tr>
</tbody>
</table>

Next time we will prove that this algorithm works, i.e., it finds a spanning tree if G is connected.
Lecture 3

BFS. Euler tours. Hamilton cycles.

1 Breadth-first search

As it turns out, BFS not only finds a spanning tree of G, but it finds a shortest path from its root to any other vertex.

Proposition 3.14. If G is a connected graph, then the breadth-first search algorithm finds a spanning tree of G. In fact, a BFS from root r gives a spanning tree T that contains an r-v path of length $d(r,v)$ for every vertex v.

Proof. The proof is a combination of the following two claims.

Claim 3.15. If $d(r,v) = k$, then v is added to the BFS tree T in the first k iterations of Step 2.

Claim 3.16. If v is added to the BFS T in the k'th iteration of Step 2, then T contains an r-v path of length at most k.

Given these claims, we see that if $d(v,r) = k$, then T contains an r-v path of length at most k. Of course there is no shorter path in G, so this path has length exactly k, as needed.

Proof of Claim 3.15. We do induction on k. If $k = 0$, then $r = v$ and the statement is trivial. Otherwise, let us take a shortest r-v path $rv_1 \ldots v_{k-1}v$. Then $d(r,v_{k-1}) \leq k - 1$ because of path $rv_1 \ldots v_{k-1}$ (actually $d(r,v_{k-1}) = k - 1$ can also be proved using the triangle-inequality from problem set 2), so by induction, v_{k-1} is added in the first $k - 1$ iterations. If v is also added, then we are done. Otherwise, $v_{k-1}v \in \partial(T)$ in the k'th iteration, so v is added (via $v_{k-1}v$ or some other edge) to T in the k'th iteration.

Proof of Claim 3.16. Again, we do induction on k. If $k = 0$, then $r = v$ and the statement is trivial. Otherwise, suppose v was added in the k'th iteration via the edge uv. Then u was added in the $k - 1$'st iteration at the latest (actually, exactly then), so by induction, T contains an r-u path of length at most $k - 1$. Adding uv to this path gives an r-v path (actually path) of length at most k in T. By Proposition 2.7, this walk contains an r-v path, also of length at most k.

Definition. The diameter of a graph G is the largest distance among any pairs of vertices: $\text{diam}(G) = \max_{x,y \in V(G)} d(x,y)$. If G is disconnected, then $\text{diam}(G) = \infty$.

BFS has a number of applications in providing fairly (or very) efficient algorithms for solving certain tasks on graphs. For example:

- **Find a shortest path from x to v in G:** Run the algorithm with root u to get a tree T. The unique path from u to v in T (which exists by Lemma 2.12) is a shortest path.

- **Find the connected components of G:** Run the algorithm with some root r. The vertices explored by BFS are exactly the component of r. If there is an unexplored vertex r', run BFS again from r' as a root. Repeat until all vertices are visited. This actually gives a spanning forest of G.
• Compute $diam(G)$: For each pair of vertices, we can find a shortest path and thus the distance. Do this for all pairs and take the largest distance.

• Find a shortest cycle in G: For every edge uv, find a shortest path between u and v in $G - uv$ (if it exists), then combine this path with uv to get a cycle. (This will be a shortest cycle through uv.) Compare all these cycles to find the shortest.

• Determine if G is bipartite: Determine the connected components of G. In every component H, select a root r, and partition the vertices into $X = \{x \in V(H) : d(r, x) \text{ is even}\}$ and $Y = \{y \in V(H) : d(r, y) \text{ is odd}\}$. Then H is bipartite if and only if X and Y have no internal edges (see the proof of Theorem 1.2), and G is bipartite if and only if every component is bipartite.

Not all of these algorithms are the most efficient, but they are already much better than brute force approaches that go over all possible answers. There are all kinds of algorithms that do these tasks faster, but in this course, we don’t care too much about efficiency, and we focus on the graph-theoretical aspects (in particular, proving that the algorithms work).

We should emphasize, though, that for finding shortest paths between two vertices, BFS is the best general algorithm. For example, Dijkstra’s algorithm, a variant of BFS that works for graphs with positive edge weights (representing, e.g., the lengths of streets) is directly used by routing softwares.

2 Euler tours

Definition. A trail is a walk with no repeated edges. A tour is a closed trail (i.e., one that starts and ends at the same vertex).

Definition. An Euler (or Eulerian) trail in a (multi)graph $G = (V, E)$ is a trail in G passing through every edge (exactly once). An Euler tour is a tour in G passing through every edge.

This notion originates from the “seven bridges of Kónigsberg” problem – the oldest problem in graph theory, originally solved by Euler in 1736 – that asked if it was possible to walk through all the seven bridges of Königsberg in one go without crossing any of them twice.

This question can be turned into a graph problem asking for an Euler trail. Euler solved the problem by noticing that the existence of Euler trails is closely related to the degree parities.

Theorem 3.17. A connected (multi)graph has an Eulerian tour if and only if each vertex has even degree.

The proof of this theorem is based on the following simple lemma.
Lemma 3.18. In a graph where all vertices have even degree, every maximal trail is a closed trail.

Proof. Let \(T \) be a maximal trail. If \(T \) is not closed, then \(T \) has an odd number of edges incident to the final vertex \(v \). However, as \(v \) has even degree, there is an edge touching \(v \) that is not contained in \(T \). This edge can be used to extend \(T \) to a longer trail, contradicting the maximality of \(T \).

Proof of Theorem 3.17. To see that the condition is necessary, suppose \(G \) has an Eulerian tour \(C \). If a vertex \(v \) was visited \(k \) times in the tour \(C \), then each visit used 2 edges incident to \(v \) (one incoming edge and one outgoing edge). Thus, \(d(v) = 2k \), which is even.

To see that the condition is sufficient, let \(G \) be a connected graph with even degrees. Let \(T = e_1e_2\ldots e_\ell \) (where \(e_i = (v_{i-1}, v_i) \)) be a longest trail in \(G \). Then it is maximal, of course. According to the Lemma, \(T \) is closed, i.e., \(v_0 = v_\ell \). \(G \) is connected, so if \(T \) does not include all the edges of \(G \) then there is an edge \(e \) outside of \(T \) that touches it, i.e., \(e = uv_i \) for some vertex \(v_i \) in \(T \). Since \(T \) is closed, we can start walking through it at any vertex. But if we start at \(v_i \) then we can append the edge \(e \) at the end: \(T' = e_{i+1}\ldots e\ell e_1e_2\ldots e_i e \) is a trail in \(G \) which is longer than \(T \), contradicting the fact that \(T \) is a longest trail in \(G \). Thus, \(T \) must include all the edges of \(G \) and so it is an Eulerian tour.

Corollary 3.19. A connected multigraph \(G \) has an Euler trail if and only if it has either 0 or 2 vertices of odd degree.

Proof. Suppose \(T \) is an Euler trail from vertex \(u \) to vertex \(v \). If \(u = v \) then \(T \) is an Eulerian tour and so by Theorem 3.17, it follows that all the vertices in \(G \) have even degree. If \(u \neq v \) then let us add a new edge \(e = uv \) to \(G \). In this new multigraph \(G \cup \{e\} \), \(T \cup \{e\} \) is an Euler tour. By Theorem 3.17 we see that all the degrees in \(G \cup \{e\} \) are even. This means that in the original multigraph \(G \), the vertices \(u, v \) are the only ones that have odd degree.

Now we prove the other direction of the corollary. If \(G \) has no vertices of odd degree then by Theorem 3.17 it contains an Eulerian tour which is also an Eulerian trail. Suppose now that \(G \) has 2 vertices \(u, v \) of odd degree. Then add a new edge \(e \) to \(G \). Now all vertices of the resulting multigraph \(G \cup \{e\} \) have even degree, so, by Theorem 3.17 it has an Eulerian tour \(C \). Removing the edge \(e \) from \(C \) gives an Eulerian trail of \(G \) from \(u \) to \(v \).

3 Hamilton cycles

Euler trails are walks that use each edge exactly once. But what if we want to use each vertex exactly once?

Definition. A Hamilton (or Hamiltonian) cycle in a graph \(G \) is a cycle that contains all vertices of \(G \). A Hamilton path in a graph \(G \) is a path that contains all vertices of \(G \). A graph \(G \) is Hamiltonian if it contains a Hamilton cycle.
Although the proof of Theorem 3.17 is not really described in an algorithmic way, it can actually be turned into an efficient algorithm. However, no good algorithm is known that would find a Hamilton cycle in a graph: nothing that would be much better a brute-force algorithm that tries every possible way to visit all vertices in the graph. Deciding if G is Hamiltonian is a so-called NP-hard (actually, NP-complete) problem. Loosely speaking, this means that an efficient algorithm for this problem could be transformed into an efficient algorithm for many other problems that are also considered algorithmically difficult.

Definition. The **girth** of a graph G is the length of the shortest cycle contained in G. The **circumference** is the length of the longest cycle contained in G.

For example, the complete graph K_n for $n \geq 3$ has girth 3 and circumference n.

We have seen that computing the girth of a graph can be done fairly efficiently using BFS. But finding the circumference is even more difficult than deciding if a graph is Hamiltonian (because a graph has a Hamilton cycle if and only if its circumference is n).

Another related problem is to find a shortest Hamilton cycle in a graph with weighted edges; this is called the *travelling salesman problem* (*TSP*) and is one of the most famous computationally hard problems, with many real-life applications.

Although we have no general algorithm or recipe for finding Hamilton cycles, we can still prove some theorems that are useful in certain situations. Our first example is a necessary condition for Hamiltonicity.

Given a graph G and a set $S \subset V(G)$ of vertices, we write $G - S$ for the graph obtained by removing the vertices of S from G, along with all the edges touching the vertices in S.

Lemma 3.20. If G has a Hamilton cycle, then for all $S \subset V(G)$, $G - S$ has at most $|S|$ connected components.

Proof. The Hamilton cycle must visit all the components of $G - S$ (viewed as subgraphs of G), and to get from one component to another the cycle must pass through a vertex of S. Thus every component is connected to S by two edges of the cycle (and possibly by other edges not in the cycle). Since every vertex is incident to two edges of the cycle, we have that twice the number of components is at most twice the number of vertices of S. □

This lemma can be useful to show that a graph does not have a Hamilton cycle. For example, if in the left-hand graph G below, S consists of the middle two vertices, then $G - S$ has three connected components, so by Lemma 3.20 the graph has no Hamilton cycle.

On the other hand, it is important to emphasize that the condition in Lemma 3.20 is not sufficient. For example, one can check that the right-hand graph H satisfies the condition that for all $S \subset V(H)$, $H - S$ has at most $|S|$ components, yet it has no Hamilton cycle. To see the latter, observe that for each vertex of degree 2, both incident edges would need to be in the cycle; but then the middle vertex would be incident to at least three edges of the cycle, which is impossible.
Lecture 4
Hamilton cycles.

1 Sufficient conditions for Hamiltonicity

First, we will show that a graph with many edges must have a Hamilton cycle. Unfortunately, there is no chance to get a very good bound on the number of edges sufficient to guarantee a Hamilton cycle, because there are “almost complete” graphs that are not Hamiltonian.

Take for instance the graph G consisting of K_{n-1} and an additional vertex connected to a single vertex of K_{n-1}. This graph has $\binom{n-1}{2} + 1$ edges (so only misses $n-2$ edges), but it is not Hamiltonian, because it has a vertex of degree 1. Our next result shows that any graph with more edges contains a Hamilton cycle.

\textbf{Theorem 4.21.} If G is an n-vertex graph with $|E(G)| > \binom{n-1}{2} + 1$ edges, then G contains a Hamilton cycle.

\textit{Proof.} We apply induction on n. The statement is clearly true for $n = 1, 2, 3$, so we assume $n > 3$.

We claim that G has a vertex v of degree at least $n-2$. Indeed, otherwise every vertex has degree at most $n-3$, so $|E(G)| = \sum_v d(v) \leq \frac{n(n-3)}{2} < \frac{(n-1)(n-2)}{2} = \binom{n-1}{2}$, contradicting our assumption.

Now let $G' = G - v$, so G' has $n-1$ vertices. We distinguish the two cases $d(v) = n-2$ and $d(v) = n-1$.

Suppose $d(v) = n-2$. Then

$$|E(G')| = |E(G)| - (n-2) > \binom{n-1}{2} + 1 - (n-2) = \binom{n-2}{2} + 1,$$

so G' has a Hamilton cycle C by induction. Since $d(v) = n-2$ and $n > 3$, v must be adjacent to two consecutive vertices of this cycle, x and y. Then we can remove the edge xy from C and replace it by xv and vy to get a Hamilton cycle in G.

Now suppose $d(v) = n-1$. In this case we only have $|E(G')| > \binom{n-2}{2}$, so we cannot apply induction right away. If G' is complete, then G' has a Hamilton cycle, and we can add v as in the previous case (in fact, as $d(v) = n-1$, v is now adjacent to every vertex of the cycle).

Otherwise, there is an edge xy missing from G'. Let us look at the graph $G' + xy$ that we get by adding xy to G'. Now this graph has more than $\binom{n-2}{2} + 1$ edges, so we can apply induction to find a Hamilton cycle C in it. If C does not contain xy, then we can again add v as in the previous case. If C does contain xy, then replacing xy with the path xvy in C gives a Hamilton cycle in G. \qed

As mentioned before, the condition in the theorem above is somewhat weak in the sense that many graphs that have a Hamilton cycle do not satisfy the condition. The following sufficient condition does better by looking at the minimum degree instead of the total number of edges. Note that we have previously seen that every graph G has a cycle of length at least $\delta(G)+1$. The following theorem says that something much stronger is true when the minimum degree is at least $|V(G)|/2$.

Theorem 4.22 (Dirac). Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq \frac{n}{2}$, then G contains a Hamilton cycle.

Proof. First observe that G must be connected, because each component contains at least $\delta(G) + 1 > n/2$ vertices, so G cannot have more than one components.

Take a longest path $P = v_1v_2 \ldots v_k$ in G. By maximality, all neighbors of v_1 and v_k are in the path. Let us say that an edge v_iv_{i+1} is type-1 if $v_{i+1} \in N(v_i)$, and let us say that it is type-2 if $v_i \in N(v_{i+1})$. As $\delta(G) \geq n/2$, we have at least $n/2$ type-1 and $n/2$ type-2 edges in P. But P has at most $n - 1$ edges, so some edge v_jv_{j+1} is both type-1 and type-2, i.e., v_1v_{j+1} and v_jv_k are edges of G. Then $C = P - v_jv_{j+1} + v_1v_{j+1} + v_jv_k = v_j \ldots v_1v_{j+1} \ldots v_kv_i$ is a cycle.

In fact, C is a Hamilton cycle. Indeed, suppose not all vertices are contained in C. Since G is connected, there must be an edge uv where $u \notin C$. Then there is a path that goes from u to v, and then all around the cycle C to a neighbor of v_i. This path contains $k + 1$ vertices, contradicting the maximality of P.

This theorem is again best possible, in the sense that a weaker bound on the minimum degree would not imply a Hamilton cycle. Take for instance the graph G consisting of two copies of K_k sharing a single vertex. This graph has $n = 2k - 1$ vertices and minimum degree $\delta(G) = k - 1 = \frac{n-1}{2}$, but no Hamilton cycle, because deleting the shared vertex creates two components, contradicting Lemma 3.20.

It is easy to check that the proof of Dirac’s theorem works for the following strengthening, as well:

Theorem 4.23 (Ore). Let G be a graph on $n \geq 3$ vertices. If $d(u) + d(v) \geq n$ for any non-adjacent vertices u and v, then G contains a Hamilton cycle.

Using this theorem, one can also obtain a short proof of Theorem 4.24 (see problem set), so one can think of Ore’s theorem as a common generalization of Theorems 4.21 and 4.22.

We will give one more sufficient condition, that is not a corollary of Ore’s theorem. We need the following definition.

Definition. Let G be a graph. A vertex set $I \subseteq V(G)$ is called independent in G if no two vertices of I are connected by an edge of G. The independence number $\alpha(G)$ is the size of the largest independent set in G.

For example, $\alpha(K_n) = 1$, $\alpha(K_{n,m}) = \max(n,m)$, and the independence number of the empty graph on n vertices is n.

Theorem 4.24. Let G be a graph on $n \geq 3$ vertices. If G has at least $\alpha(G)$ vertices of degree $n - 1$, then it contains a Hamilton cycle.

Proof. Let $k = \alpha(G)$, and let us take a longest cycle C in G. We will prove that C is a Hamilton cycle. So suppose that C is not Hamiltonian, and let v be any vertex not contained in the cycle. Then:

- v is not adjacent to both of any two consecutive vertices x, y in C.

Indeed, otherwise we could replace the edge xy in C with the path xvy to get a longer cycle (see figure on the right). In particular, this observation means that every vertex of degree $n - 1$ is in the cycle.

So let $v_1, \ldots, v_k \in C$ be k of the vertices of degree $n - 1$, and for each $i = 1, \ldots, k$, let u_i be the vertex immediately following v_i on C in the clockwise direction. The observation above implies that no u_i is a neighbor of v, in particular, the u_i are all different from the v_i.

13
Now the set \(\{ v, u_1, \ldots, u_k \} \) has size \(k + 1 > \alpha(G) \), so by assumption, it cannot be independent. \(G \) therefore contains an edge \(u_iu_j \). But then we can remove the edges \(v_iu_i \) and \(v_ju_j \) from \(C \) and replace them by the edges \(u_iu_j, v_iv \) and \(vv_j \) (see figure on the left). Again, we get a longer cycle, and this contradiction shows that \(C \) must contain all vertices of \(G \).

2 Covering the vertices with multiple paths

Not every graph has a Hamilton path. For example, if \(G \) has \(k \) components, then we surely need at least \(k \) paths to visit all the vertices of \(G \), and even that is not necessarily possible. The next result shows that \(\alpha(G) \) paths are always enough to cover all vertices of \(G \).

Theorem 4.25. Every graph \(G \) contains a set of at most \(\alpha(G) \) vertex-disjoint paths (i.e. paths that share no vertex in common) that together contain all vertices of \(G \).

Proof. We proceed by induction on \(\alpha(G) \). If \(\alpha(G) = 1 \) then \(G \) is a complete graph, so it has a Hamilton path. So suppose \(\alpha(G) > 1 \), and let \(P = v_1 \ldots v_k \) be a maximal path in \(G \). Our plan is to delete this path and its vertices from \(G \) and apply the induction hypothesis to the remaining graph \(G' = G - \{ v_1, \ldots, v_k \} \).

For this we just need to observe that \(\alpha(G') < \alpha(G) \). Indeed, let \(X \) be an independent set in \(G' \) of size \(\alpha(G') \). As \(P \) is maximal, all neighbors of \(v_1 \) are in \(P \), so in particular, \(v_1 \) is not adjacent to any vertex of \(G' \). But then \(X \cup \{ v_1 \} \) is an independent set of size \(\alpha(G') + 1 \) in \(G \).

Hence we can apply induction to \(G' \), and get a set of at most \(\alpha(G') \) disjoint paths that cover all vertices of \(G' \). Together with \(P \), this gives a collection of at most \(\alpha(G) \) disjoint paths that cover all vertices of \(G \).

3 Tournaments

Definition. A tournament is a directed graph that has exactly one (oriented) edge between any two vertices.

For example, if we take a complete graph and give each edge an orientation then we get a tournament. We use \(u \to v \) to denote that there is an edge \(uv \) directed from \(u \) to \(v \). What is the longest directed path in such a graph?

Theorem 4.26. Every tournament contains a directed Hamilton path.

Proof. We do induction on the number of vertices \(n \). For \(n = 2 \), there is nothing to prove, since one can take the only edge of the tournament as the Hamilton path. Now suppose \(n > 2 \), and let \(v \) be a vertex of \(T \). By induction, \(T - v \) has a Hamilton path \(P = v_1v_2 \ldots v_n \). If \(v \to v_1 \) or \(v_n \to v \), then \(vv_1v_2 \ldots v_n \) or \(v_1v_2 \ldots v_nv \) is a Hamilton path in \(T \). So assume \(v_1 \to v \) and \(v \to v_n \). But then there must be a vertex \(v_i \) with \(1 \leq i \leq n - 1 \), such that \(v_i \to v \) and \(v \to v_{i+1} \), so \(v_1v_2 \ldots v_iv_{i+1}v_{i+2} \ldots v_n \) is a Hamilton path in \(T \).
Of course, not every tournament contains a directed Hamilton cycle. In fact, there is a
tournament that does not contain any cycle, whatsoever: the so-called transitive tournament
on vertex set \(\{1, \ldots, n\} \) where each edge is oriented from the smaller endpoint to the larger
one. But can we find conditions for the existence of a Hamilton cycle?

A first guess might be that it is enough if every vertex has both an incoming and an
outgoing edge (this is clearly required). But this is not sufficient:

There is, however, a fairly simple necessary and sufficient condition.

Definition. A directed graph is *strongly connected* if for any two vertices \(u \) and \(v \), there is
a directed path from \(u \) to \(v \) (and vice versa).

Theorem 4.27. A tournament \(T \) has a Hamilton cycle if and only if it is strongly connected.

Proof. If \(T \) is Hamiltonian, then it is clearly strongly connected: for any \(u \) and \(v \) the Hamilton
cycle contains a path from \(u \) to \(v \).

Now, suppose \(T \) is not Hamiltonian. Let \(C \) be a longest directed cycle in \(T \) and take a
\(v \not\in C \). If \(C \) has 2 consecutive vertices \(u, u' \) such that \(u \to v \) and \(v \to u' \), then there is a
longer cycle on the vertex set \(C \cup \{v\} \):

Otherwise all edges between \(v \) and \(C \) go in only one direction. By our assumption on \(C \),
this must hold for all \(v \not\in C \). Let \(A \) be the set of \(v \not\in C \) such that edges go from \(v \) to \(C \), and
let \(B \) be the set of \(v \not\in C \) such that edges go from \(C \) to \(v \). If one of \(A \) or \(B \) is empty, then
\(T \) cannot be strongly connected. For example, if \(B \) is empty then there is no path from any
vertex of \(C \) to any vertex of \(A \).

So, suppose both of \(A \) and \(B \) are nonempty. If there was an edge oriented from some
vertex \(b \in B \) to a vertex \(a \in A \) then we could extend \(C \), contradicting maximality (we could
replace any edge \(x \to y \) in \(C \) with the path \(x \to b \to a \to y \)). So all edges between \(A \) and \(B \)
are directed from \(A \) towards \(B \), but then there is no path from any vertex in \(B \) to any vertex
in \(A \), so again \(T \) is not strongly connected.

Note that no such description for Hamiltonicity is known for graphs. As mentioned earlier,
it is algorithmically hard to decide whether or not a given graph contains a Hamilton cycle.
For tournaments this is not the case. For example, one can turn the above proof into a
relatively fast algorithm. In some sense, this shows that tournaments are simpler structures
than graphs.
Lecture 5

Planar graphs.

1 Drawings of graphs

We have so far only considered abstract graphs, although we often used pictures to illustrate the graph. In this lecture, we prove some facts about pictures of graphs and their properties. To set this on a firm footing, we give a formal definition of what we mean by “picture”, although in most of the lecture we will be less formal.

Definition. A drawing of a graph G consists of an injective map $f : V(G) \to \mathbb{R}^2$, and a curve γ_{xy} (the image of an injective continuous map $[0, 1] \to \mathbb{R}^2$) from x to y for every $xy \in E(G)$, such that $f(z) \notin \gamma_{xy}$ for any vertex $z \neq x, y$. A drawing is planar if the curves γ_{xy} do not intersect each other except possibly at endpoints.

Definition. A graph is planar if it has a planar drawing.

For example, the graphs K_4 and $K_{2,3}$ are planar graphs.

To show that a graph is planar, we only have to supply a planar drawing. It is often a little harder to show that a graph is not planar.

Proposition 5.28. The graph K_5 is not planar.

Proof. The graph contains a K_3, which can basically be drawn in only one way. If in a drawing the fourth vertex is inside this K_3 and the fifth is outside, then the edge between them must cross the K_3, which means that the drawing is not planar. If both vertices are inside the K_3, then the three edges of one vertex divide the inside of K_3 into three regions. The other vertex must then be in one of these regions, and one vertex of K_3 is outside this region, so again, the edge between these two vertices crosses the boundary of the region. A similar argument applies when both vertices are outside the K_3.

Note that this proof heavily relied on the fact that an edge connecting a vertex inside of K_3 (or any other cycle) to a vertex outside must cross the K_3 (or cycle). This is a highly non-trivial statement that depends on a strong topological theorem called the Jordan Curve Theorem, that states that every non-self-intersecting closed curve in \mathbb{R}^2 divides \mathbb{R}^2 into an inside and an outside, and any path between a point inside and a point outside must pass through the closed curve. We remark that this theorem is specific to the plane: it is not always true in some other surfaces, for example, on a torus.

The Jordan Curve Theorem is well beyond the scope of this course. To avoid using such heavy machinery, we could replace continuous curves with polygonal paths in the definition of drawings, where a polygonal path is a special curve, whose image is a union of finitely many segments. The Jordan Curve Theorem is much easier to prove for such paths.

Nevertheless, many technicalities arise when adding edges to drawings, even if we use polygonal paths, but we are going to ignore these for clarity. Therefore, our proofs concerning planarity will sometimes appeal to intuition, hence they will not always be completely rigorous.
2 Euler’s formula

One important property that distinguishes planar drawings from general graph drawings is that plane drawings have faces.

Definition. A face of a planar drawing D of a graph G is a maximal connected set in \mathbb{R}^2 after the vertices and edges of D are removed.

Every planar drawing has an outer face, which is the unique unbounded face in the complement of the drawing. We think of the boundary of a face as the closed walk around it. So if an edge only bounds one face, then it appears in the boundary walk twice. (Actually, if the graph is disconnected, then the boundary of some faces will not be one closed walk, but a union of closed walks.)

Note that the faces of a drawing are usually not determined by the graph, i.e., different drawings might have different boundary walks. However, the following theorem shows that the number of faces is always the same.

Theorem 5.29 (Euler’s formula, 1752). Let D be a plane drawing of a connected planar graph with n vertices, e edges and f faces. Then

$$n - e + f = 2.$$

Proof. We use induction on e. Since the graph is connected, we have $e \geq n - 1$, so we can start with the base case $e = n - 1$. In that case, G contains no cycles (it is a tree), so any planar drawing has only one face and we have $f = 1$. Then

$$n - e + f = n - (n - 1) + 1 = 2.$$

Now suppose $e \geq n$. Then G contains a cycle C. Let $xy \in E(C)$ be an edge of this cycle. The graph $G \setminus xy$ is connected, and erasing this edge from D gives a planar drawing D' of $G - e$ with n' vertices, e' edges and f' faces. Clearly, $n' = n$ and $e' = e - 1$.

Moreover, by the Jordan Curve Theorem, there is no face both inside and outside C, so xy is on the boundary of two different faces. Removing xy merges these two faces, and does not affect any other faces, so $f' = f - 1$.

Applying induction to D', we get

$$2 = n' - e' + f' = n - (e - 1) + (f - 1) = n - e + f,$$

as needed.

As we mentioned before, this means that the number of faces is the same in any plane drawing of a connected planar graph, namely $f = 2 + e - n$. Euler’s formula also has the important consequence that a planar graph cannot be too dense.

Proposition 5.30. Every planar graph G on $n \geq 3$ vertices has at most $3n - 6$ edges. If G is also bipartite, then it has at most $2n - 4$ edges.

Proof. We may assume that G is connected: otherwise we repeatedly add edges between different components. This does not change planarity, so if the bound holds for this graph, it will also hold for the original with fewer edges.

Now in a drawing of a connected graph, every face F is bounded by a closed walk; let ℓ_F be the length of this walk. As we have observed before, each edge of G is either on the boundary of two faces, or it appears twice in the boundary walk of the one face. Either way,
each edge is counted twice in the sum of the ℓ_F. On the other hand, we have $\ell_F \geq 3$ for every
device F because G is connected on at least 3 vertices. Hence,

$$3f \leq \sum_{F \text{ face}} \ell_F = 2e.$$

G is connected, so we can apply Euler’s formula. Together with $f \leq 2e/3$, it gives

$$2 = n - e + f \leq n - e + 2e/3 = n - e/3,$$

which rearranges to $e \leq 3n - 6$, as needed.

If G is also bipartite, then ℓ_F cannot be odd, so $\ell_F \geq 4$. The same argument then implies

$f \leq e/2$, and plugging this in Euler’s formula gives $e \leq 2n - 4$.

This result gives us easy to check necessary conditions for a graph to be planar, e.g., a
much simpler proof of Proposition 5.28.

Corollary 5.31. K_5 and $K_{3,3}$ are not planar.

Proof. K_5 has 5 vertices and 10 edges, but $10 > 3 \cdot 5 - 6 = 9$, so by Proposition 5.30 it
cannot be planar.

Similarly, $K_{3,3}$ is bipartite, with 6 vertices and 9 edges, but $9 > 2 \cdot 6 - 4 = 8$, so Proposition
5.30 shows it is not planar.

If a graph H is a subgraph of a graph G and H is not planar, then G is also not planar,
since a planar drawing of G would give a planar drawing of H. A stronger version of this is the following. Call a graph H' a subdivision of H if it can be obtained from H by repeatedly
replacing an edge xy by a path xzy for some new vertex z (informally, we simply place the
new vertex z somewhere on top of the edge xy, subdividing it into two edges xz and zy). It
is easy to see that a subdivision of H is planar if and only if H is planar; the new vertices
do not have any effect on whether or not we can draw the graph without crossing edges.

So if a graph contains a subdivision of K_5 or $K_{3,3}$, then it is not planar. Amazingly, the
converse is also true. If the graph is not planar, then it contains a K_5 or $K_{3,3}$-subdivision:

Theorem 5.32 (Kuratowski). An graph is planar if and only if it does not contain a subdi-
vision of K_5 or $K_{3,3}$.

So in some sense K_5- and $K_{3,3}$-subdivisions are the only “obstructions” for planarity. Note
that it states an equivalence between a topological statement (the graph having a planar
drawing) and a combinatorial statement (the graph not containing a certain subdivision).
The proof of this theorem is fairly hard and we will not include it in this course.

3 Coloring planar graphs

In 1852, Francis Guthrie asked the following question: How many colors are needed to
paint the countries of a political map so that adjacent countries get different colors? In fact,
he conjectured that four colors are always enough.

This problem can be represented by a planar graph if we place a vertex inside each country,
and connect two vertices by an edge if they share a piece of their border.

Definition. A proper vertex coloring of a graph G is a map $c : V(G) \to X$ for some set of
colors X, such that $c(u) \neq c(v)$ whenever $uv \in E(G)$.

The chromatic number $\chi(G)$ is the minimum size such a set X, i.e., it is the minimum
number of colors that the vertices of G can be properly colored with.
Guthrie’s conjecture can then be stated in terms of the chromatic number of planar graphs. After many failed and partially successful attempts, the conjecture was proved 120 years later by Appel and Haken, with heavy computer assistance.

Theorem 5.33 (Four color theorem – Appel-Haken, 1976). *For every planar* G, $\chi(G) \leq 4$.

Even today, there is no proof known for this theorem that would be feasible to do by hand (the simplest proofs still involve checking over 600 cases). We will instead prove $\chi(G) \leq 6$ first, and then improve it to $\chi(G) \leq 5$ at the next lecture.

Theorem 5.34. *For every planar graph* G, $\chi(G) \leq 6$.

Proof. We proceed by induction on the number of vertices n. For $n \leq 6$, there is nothing to do, we can always color the vertices with different colors. Let $n \geq 7$.

Claim 5.35. *If* G *is planar, then it has a vertex of degree at most five.*

Proof. Suppose not. Then every vertex has degree at least 6, so the number of edges in G is at least $\frac{1}{2} \sum d(v) \geq 3n$. But according to Proposition 5.30, a planar graph can have at most $3n - 6$, which is a contradiction. □

So let v be a vertex of degree at most 5. By induction, $G - v$ can be (properly) 6-colored. In this coloring, the neighbors of v use at most 5 colors, so we can extend this to a 6-coloring of G by giving v a color not used by its neighbors. □
Lecture 6

Coloring.

1 Coloring planar graphs

Theorem 6.36 (Five color theorem – Heawood, 1890). *If G is planar, then χ(G) ≤ 5.*

Proof. We use induction on the number of vertices n. As before, n ≤ 5 is clear. By Claim 5.35 there is a vertex v ∈ V(G) of degree at most five, so by induction, we can color G − v with five colors. If this coloring uses at most four colors on N(v), then we can color v with the fifth color and we are done. Thus we can assume that v has five neighbors x₁, . . . , x₅, and that xᵢ has color i.

Now fix a planar drawing of G. We can assume that the edges vx₁, . . . , vx₅ leave v in that order when we go around v in the clockwise direction (say). We call a path in G an ij-path if all its vertices have color i or j.

Suppose that there is no 13-path from x₁ to x₃. Let R be the set of vertices that are reachable from x₁ by a 13-path. By assumption, x₃ is not in R. So let us swap the colors 1 and 3 among the vertices in R: This gives a proper coloring, and it makes both x₁ and x₃ colored with 3. Then coloring v with 1 gives a 5-coloring of G.

Now suppose that there is a 13-path from x₁ to x₃; together with v this path forms a cycle C, all of whose vertices are colored with 1 or 3 (or uncolored in the case of v). Let S be the set of vertices reachable by 24-paths from x₂. Then the cycle C separates S from x₄ (here we use the Jordan Curve Theorem), so x₄ is not in S. Thus we can swap colors 2 and 4 in S, and then color v with 2. □

2 Vertex coloring

Recall the we call a graph (properly) *k-colorable* if its vertices can be colored with k colors in such a way that no two adjacent vertices get the same color, and that the chromatic number χ(G) is the minimum k such that G is k-colorable.

So far we have looked at the chromatic number of planar graphs, but it also makes sense to study the concept for general graphs. Actually, many real-life problems may be interpreted as graph coloring problems. Here is one example from scheduling:

Example. The students at a certain university have annual examinations in all the courses they take. Naturally, examinations in different courses cannot be held concurrently if the courses have students in common. How can all the examinations be organized in as few parallel sessions as possible? To find a schedule, consider the graph G whose vertex set is the set of all courses, two courses being joined by an edge if they give rise to a conflict. Clearly, independent sets of G correspond to conflict-free groups of courses. Thus, the required minimum number of parallel sessions is the chromatic number of G.

We first collect some easy facts about the chromatic number.

Definition. The complement of a graph G is the graph \(\overline{G} \) with vertex set \(V(\overline{G}) = V(G) \) and edge set \(E(\overline{G}) = \{xy : x, y \in V(G), xy \not\in E(G)\} \).

The clique number \(\omega(G) \) is the size of the largest complete subgraph (clique) of G. So \(\omega(G) = \alpha(\overline{G}) \).
Fact 6.37. 1. \(\chi(K_s) = s\)

2. \(G\) is bipartite if and only if \(\chi(G) \leq 2\)

3. If \(H\) is a subgraph of \(G\), then \(\chi(H) \leq \chi(G)\)

4. \(\chi(G) \geq \omega(G)\) for every graph \(G\).

Proof. 1. and 2. follow from the definition. For 3., we just need to notice that every proper coloring of \(G\) provides a coloring of \(H\). 4. is then a combination of 1. and 3.

So \(\omega(G)\) is a trivial lower bound on the chromatic number, but it is not necessarily tight:

Example. The following graph \(G\) satisfies \(\chi(G) = 4\) and \(\omega(G) = 3\).

\[
G = \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\end{array}
\]

A \(k\)-coloring can be thought of splitting the vertices into \(k\) independent sets. This readily implies the following lower bound on \(\chi(G)\).

Lemma 6.38. For every graph \(G\), we have \(\chi(G) \geq \frac{|V(G)|}{\alpha(G)}\).

Proof. Given a coloring with \(\chi(G)\) colors, the color classes (label them \(V_1, \ldots, V_{\chi(G)}\)) are independent sets, and thus have size at most \(\alpha(G)\). Hence we have

\[
|V(G)| = \sum_{i=1}^{\chi(G)} |V_i| \leq \sum_{i=1}^{\chi(G)} \alpha(G) = \chi(G) \alpha(G).
\]

Claim 6.39. For any two graphs \(G_1\) and \(G_2\) on the same vertex set \(V\), \(\chi(G_1 \cup G_2) \leq \chi(G_1) \chi(G_2)\).

Proof. For both \(i = 1, 2\), let \(k_i = \chi(G_i)\) and take a \(k_i\)-coloring \(c_i : V \to [k_i]\) of \(G_i\). (Here \([n]\) denotes the set \(\{1, \ldots, n\}\).) We will color the vertices in \(V\) with elements of the set \([k_1] \times [k_2]\). Indeed, \(c(v) = (c_1(v), c_2(v))\) gives a proper \(k_1k_2\)-coloring of \(G = G_1 \cup G_2\), because if two vertices \(u, v\) are adjacent in \(G\), then they are also adjacent in some \(G_i\), hence the \(i\)’th coordinate of their colors will differ. So \(\chi(G) \leq k_1k_2\).

Further simple bounds on the chromatic number can be found in the problem set.

Let \(G = (V, E)\) be a graph. We say that \(G\) is \(d\)-degenerate if every subgraph of \(G\) has a vertex of degree less than or equal to \(d\). The following proposition connects the degeneracy of \(G\) and the chromatic number of \(G\). The six color theorem was in fact a special case of this lemma.

Lemma 6.40. If \(G\) is \(d\)-degenerate, then \(\chi(G) \leq d + 1\).

Proof. We do induction on the number of vertices. The statement is clearly true for all \(G\) with at most \(d + 1\) vertices. For larger graphs, pick a vertex \(v\) of degree \(\leq d\) in \(G\). The graph \(G - v\) is \(d\)-degenerate (because every subgraph of \(G - v\) is a subgraph of \(G\)), so it can be \((d + 1)\)-colored. Then color \(v\) into the color that does not appear among the colors of its neighbors. This gives a proper coloring of \(G\).
Corollary 6.41. \(\chi(G) \leq \Delta(G) + 1 \) for every graph \(G \).

Proof. \(G \) is clearly \(\Delta(G) \)-degenerate. \(\square \)

This corollary is tight for cliques and odd cycles. Interestingly, those are basically the only examples, as shown by the following theorem.

Theorem 6.42 (Brooks, 1941). Let \(G \) be a connected graph that is not isomorphic to \(K_s \) or \(C_{2k+1} \) for any \(s \) or \(k \). Then \(\chi(G) \leq \Delta(G) \).

We will not prove this theorem.

3 Edge coloring

Definition. A proper edge coloring of a graph \(G \) is a map \(c : E(G) \to X \) for some set of colors \(X \), such that \(c(e) \neq c(e') \) whenever \(e, e' \) are distinct edges that share a vertex. The edge-chromatic number \(\chi'(G) \) of \(G \) is the minimum size of such a set \(X \), i.e., it is the minimum number \(k \) such that the \(G \) can be (properly) \(k \)-edge-colored.

Example.

- \(\chi'(K_3) = 3 \)
- \(\chi'(C_4) = 2 \)
- \(\chi'(K_4) = 3 \)
- The picture on the right is an edge coloring of the Petersen graph with four colors. It is not difficult to see that its edge chromatic number is equal to 4.

Definition. A matching \(M \) is a set of vertex-disjoint edges, i.e., a set of edges such that no two of them share an endvertex.

Each color class is a set is a matching, so an edge coloring is a partition of the edges into matchings.

Lemma 6.43. For any graph \(G \) with at least one edge we have \(\Delta(G) \leq \chi'(G) \leq 2\Delta(G) - 1 \).

Proof. There is vertex of degree \(\Delta(G) \), and an edge coloring must give different colors to each of the \(\Delta(G) \) edges at that vertex. This implies \(\chi'(G) \geq \Delta(G) \).

The upper bound follows by a proof similar to the proof of Lemma 6.40. We can do induction on the number of edges. So delete an edge \(e \), and take a \((2\Delta(G) - 1) \)-edge-coloring of \(G - e \). Since an edge shares a vertex with at most \(2(\Delta(G) - 1) \) edges, there must be a free color left for \(e \). \(\square \)

However, this simple upper bound can be significantly improved. This is shown by the following theorem, which tells us that any graph \(G \) has edge-chromatic number either \(\Delta(G) \) or \(\Delta(G) + 1 \). Both are possible, since even cycles have \(\chi_e(G) = \Delta(G) \) and odd cycles have \(\chi_e(G) = \Delta(G) + 1 \). However, the algorithm in the proof still does not always give the exact number, and in fact it is NP-hard to determine which of the two values is the edge-chromatic number of a given graph.
Theorem 6.44 (Vizing, 1964). For every graph G we have $\chi'(G) = \Delta$ or $\Delta(G) + 1$.

Proof. We only need to show $\chi'(G) \leq \Delta(G) + 1$. To prove this, we use induction on the number of edges. The statement clearly holds for a graph without edges.

Given an edge $xy \in E(G)$, we describe an algorithm that, given an edge coloring of $G - xy$ with at most $\Delta(G) + 1$ colors, produces an edge coloring of G with this many colors. But to find a color for xy, the algorithm may have to change the colors of other edges.

So take a coloring of $G - xy$. As there are more than $\Delta(G)$ available colors, every vertex has at least one color missing from the edges touching it. We say that a vertex v is c-free, if no edge incident to v has color c.

Now let us build a fan of edges around x as follows. Take the edge xy, and let $y_0 = y$. We know that y_i is c_1-free for some color c_1. Now let xy_1 be an edge of color c_1, if such an edge exists. Then y_1 is c_2-free for some color c_2.

Continue similarly: if there is an edge at x of color c_i that we have not looked at, let xy_i be this edge, and let c_{i+1} be a color missing at y_i. We repeat this process until we can; let xy_k be the last edge we added. There are two possible reasons for getting stuck: either there is no edge at x of color c_{k+1}, or this edge already appeared at some previous xy_i.

Case 1. x is c_{k+1}-free.

In this case we can just “rotate” the colors around x: Define the new color of xy_i to be c_{i+1} for every $i = 0, \ldots, k$ (keeping the colors of all other edges). This does not create any issue with any y_i, because it had been c_{i+1}-free. There is no problem at x either, because the only new color introduced is c_{k+1}. Hence this is a proper coloring of G (including the edge $xy = xy_0$).

Case 2. x is not c_{k+1}-free.

As noted above, the maximality of k implies that some edge xy_i is c_{k+1}-colored, so by definition $c_{k+1} = c_i$. Let us just call this color c, and let d be a color such that x is d-free.

Now let P be a maximal path starting at x that only uses the colors c and d. Actually, since every vertex touches at most one c-colored and one d-colored edge, and x is d-free, there is a unique such maximal path $P = xy_i \ldots z$ for some vertex z. Let us swap the colors c and d along the path. The same observation shows that this is still a proper edge-coloring of $G - e$. We again distinguish two cases.

Case 2/A. $z = y_{i-1}$.

Note that y_{i-1} was c-free, so the last edge of P must have had color d. After swapping, y_{i-1} is no longer c-free, but it is now d-free. However, the edge xy_i has color d, as well, so the edges xy_i satisfy the required properties with $c_i = d$ now. As x is now c-free, we arrive at a situation covered by Case 1, which gives a proper coloring of G (by rotating the colors, i.e., coloring each xy_j with color c_{j+1}).

Case 2/B. $z \neq y_{i-1}$.

In this case, y_{i-1} remains c-free, and x becomes c-free, as well. This means that we can rotate the colors on the first i edges only to get a proper edge coloring: recolor xy_j with the color c_{j+1} for every $j = 0, \ldots, i - 1$, and leave the color of other edges the same as what we had after swapping c and d along P. By the same arguments as before, every edge is colored, but no two touching edges get the same color. \hfill \square
Recall that a matching M is a set of vertex-disjoint edges. A perfect matching M in a graph G is a matching that touches every vertex of G. In other words, it is a 1-regular subgraph of G (recall that a graph is k-regular if all degrees equal k).

1 Stable matchings

Suppose that you have n students that want to do their internships in n companies. Each have sent their applications to all the companies. Each student and each company has their list of preferences, and we want to pair up the students with the companies so that this assignment is stable in the following sense: there is no student and company that would both prefer to work with each other rather than their assigned pairs.

More formally, consider a bipartite graph G with parts A, B, where $|A| = |B| = n$, and in which each vertex has a (strict) order of preferences for the vertices of the other part. We say that a perfect matching is stable, if there is no pair $a \in A, b \in B$, such that both of them would prefer the other to the vertex they are currently matched to.

Below we present an algorithm of Gale and Shapley, which allows to construct such a stable matching.

The Gale-Shapley Algorithm to find a stable matching M in a complete bipartite graph $G = (A \cup B, E)$ with $|A| = |B|

1. Set $M = \emptyset$;
2. Iterate:
 a. Take an unmatched vertex $a \in A$ and let $b \in B$ be the vertex that a prefers among the ones a has not tried yet.
 b. a “proposes” to b: If b is unmatched or b is matched to a', but prefers a over a', then “accept” a and “reject” a': put $M := M \cup ab$. Otherwise, “reject”: leave M unchanged;
 c. If there is no more unmatched vertices in A that have someone left on the list, then go to (3);
3. Return M.

Proposition 7.45. The matching M that the algorithm outputs is stable.

Proof. First we show that M is perfect. Indeed, if there is a pair of vertices $a \in A, b \in B$, such that both are not in the matching, then a must have proposed to b at some point. However, if a vertex $b \in B$ is in M at some step of the algorithm, then it stays in M.

Next, we show that the matching is stable. Assume that $ab \notin M$. Upon completion of the algorithm, it is not possible for both a and b to prefer each other over their current match. If a prefers b to its match, then a must have proposed to b before its current match. If b accepted its proposal, but is matched to another vertex at the end, then b prefers the current match of b over a. If b rejected the proposal of a, then b was already matched to a vertex that is better for b.

\[\square\]
2 Maximum matchings

The previous problem was about perfect matchings in a complete bipartite graph. But not every graph has a perfect matching. So how can we find a largest or maximum matching? (Not to be confused with a maximal matching, which just means that it cannot be extended, i.e., no larger matching contains it as a subgraph.) How can we even tell if a graph has a perfect matching? How can we check if a given matching is maximum?

First, note that a maximal matching need not be maximum. Take for instance a path with three edges, and the matching consisting of the middle edge. Similarly, a greedy approach that keeps adding edges without removing any, like we used for spanning trees, would probably not lead to a maximum matching. Instead, an algorithm to find maximum matchings will need some kind of backtracking, where we throw away some edges that we previously selected. The following notion lets us do that in a smart way.

Definition. Given a matching M in a bipartite graph G, a path is alternating if among any two consecutive edges on the path, exactly one is in M. An alternating path with at least one edge is augmenting if its first and last vertices are not covered by M.

Note that an augmenting path always has odd length.

Lemma 7.46. A matching M is maximum if and only if there is no augmenting path for M.

Proof. We prove that M is not maximum if and only if there is an augmenting path for M. First suppose that there is an augmenting path $P = v_1v_2\ldots v_{2k}$ for the matching M. So $v_2v_3,\ldots,v_{2i}v_{2i+1},\ldots,v_{2k-2}v_{2k-1} \in M$. Then we can get a larger matching by removing these edges from M and replacing them by $v_1v_2,\ldots,v_{2i-1}v_{2i},\ldots,v_{2k-1}v_{2k}$. In other words, we replace M by $M' = M\triangle E(P)$\footnote{We write $S\triangle T$ for the symmetric difference of two sets, i.e., $S\triangle T = (S\setminus T) \cup (T\setminus S)$.}. Then M' is a matching since v_1 and v_k were unmatched by M, and we have $|M'| = |M| + 1$, so M is not maximum.

Now suppose M is not maximum, i.e., there is a matching M' with $|M'| > |M|$. Let H be the graph with $V(H) = V(G)$ and $E(H) = M\triangle M'$. Every vertex of H has degree 0, 1 or 2, so each component of H is either a cycle, a path, or an isolated vertices. A cycle in H has the same number of edges from M and M', so $|M'| > |M|$ implies that there is a path P in D with more edges from M' than from M. Then P must be an augmenting path for M. \\\n
This result shows that to improve our matching, we just need to find an augmenting path. If no such path exists, then the matching is maximum. But it is not so easy to check if an augmenting path exists; a naive algorithm would take exponentially many steps. An efficient algorithm for a maximum matching was found by Edmonds in 1965, but it is beyond the scope of this course. However, the problem becomes much simpler in bipartite graphs.

3 Matchings in bipartite graphs

Let $G = (A \cup B, E)$ be a bipartite graph, and M be a matching in it. Note that the end vertices of every augmenting path P are in different parts (because P has odd length). So if there is an augmenting path in G, then it starts in $S = A - V(M)$ and ends in $T = B - V(M)$. Crucially, such a path starting in S will always use an edge not in M to jump to B, and an edge in M to jump back to A.

So let us define D_M to be the digraph obtained from G by orienting edges not in M from A to B, and orienting edges in M from B to A. The observations above show that
augmenting paths in G correspond to directed S-T paths in D_M. (An S-T path is a path that starts in S and ends in T.)

The point is, finding S-T paths in a directed graph is easy (e.g., using breadth-first search). So together with Lemma 7.46, we arrive at the following algorithm for finding a maximum matching in a bipartite graph.

Augmenting Path Algorithm

to find a maximum matching in a bipartite $G = (A \cup B, E)$

1. Set $M = \emptyset$;
2. Iterate:
 - (a) Set $S = A - V(M)$, $T = B - V(M)$;
 - (b) Find any directed S-T path P in D_M using BFS; if none exist, go to (3);
 - (c) Replace M with $M := M \triangle P$;
3. Return M.

4 Perfect matchings

The next question we study is: when does a bipartite graph have a perfect matching? Apart from the trivial condition $|A| = |B|$, it is easy to see that we need every set $X \subseteq A$ to have at least $|X|$ neighbors. This condition turns out to be enough, as shown by the next theorem. We state it slightly more generally, using the following definitions.

A matching M *matches* or *covers* a vertex set X if every vertex of X is contained in an edge of M. For a set $X \subseteq V(G)$, we define the neighborhood of X in G as $N(X) = \{v \in V(G) \setminus X \text{ such that } u\,v \in E(G) \text{ for some } u \in X\}$.

Theorem 7.47 (Hall, 1935). Let $G = (A \cup B, E)$ be a bipartite graph. Then G has a matching covering A if and only if for all $X \subseteq A$ we have $|N(X)| \geq |X|$.

Proof. For one direction, note that if G has a matching M that matches A, then the vertices of any $X \subseteq A$ are matched by M to $|X|$ distinct neighbors in B, which implies $|N(X)| \geq |X|$.

For the other direction, suppose $|N(X)| \geq |X|$ for every $X \subseteq A$. Let M be a maximum matching, and let $S = A - V(M)$ and $T = B - V(M)$ be the unmatched vertices in A and B. By Lemma 7.46 and the discussion above, there is no S-T path in D_M. So if X_B denotes the set of vertices in B that can be reached from S via a directed path in D_M, then X_B is disjoint from T. In other words, all vertices in X_B are matched by M.

Let $X_A \subseteq A$ be the set of vertices matched to X_B by M (here X_A is clearly disjoint from S). As the matching edges are directed from B to A, the vertices in X_A are also reachable from S in D_M. To finish the proof, we just need to check that $N(X_A \cup S) \subseteq X_B$, because this and our assumption with $X = X_A \cup S$ would imply

$$|X_B| \geq |N(X_A \cup S)| \geq |X_A \cup S| = |X_A| + |S| = |X_B| + |S|,$$

and hence $S = \emptyset$, which is what we want to prove.

To see $N(X_A \cup S) \subseteq X_B$, note that all vertices in $X_A \cup S$ are reachable from S in D_M. But then if there was a vertex $b \in B - X_B$ adjacent to some $a \in X_A \cup S$, then ab is not a matching edge, so it is directed from a to b in D_M. Consequently, $b \notin X_B$ is reachable from S, which is a contradiction. \qed
If $|A| = |B|$, then of course every matching covering A covers B, as well. So Hall’s theorem implies that a bipartite graph $G = (A \cup B, E)$ has a perfect matching if and only if $|A| = |B|$ and $|N(X)| \geq |X|$ for every $X \subseteq A$.

The property “$|N(X)| \geq |X|$ for every $X \subseteq A$” is often referred to as Hall’s condition. Testing this property algorithmically is slow, but it turns out to be a convenient thing to check in many theoretical applications.

Corollary 7.48. Let $k \geq 1$ be an integer. Every k-regular bipartite graph has a perfect matching.

Proof. Let $G = (A \cup B, E)$ be a k-regular bipartite graph. Since every edge touches exactly one vertex of A, and every vertex of A touches exactly k edges, the number of edges in G is exactly $k|A|$. By a similar argument, the number of edges is exactly $k|B|$, so $k \geq 1$ implies $|A| = |B|$.

As discussed above, Hall’s condition would now guarantee a perfect matching. To check it, let $X \subseteq A$ be a vertex set. We will double-count the edges touching X. On the one hand, there are exactly $k|X|$ such edges. On the other hand, every such edge has its other endpoint in $N(X)$, so the number of such edges is at most $k|N(X)|$. Hence $k|X| \leq k|N(X)|$, which again implies $|X| \leq |N(X)|$.

Finding perfect matchings in regular bipartite graphs can be iterated to get a proper edge coloring.

Corollary 7.49. Let G be a k-regular bipartite graph. Then $\chi'(G) = \Delta(G)$.

Proof. $\chi'(G) \geq \Delta(G)$ is clear. To show $\chi'(G) \leq \Delta(G)$, we apply induction on k.

For $k = 0$, it is clear. For $k \geq 1$, apply Corollary 7.48 to find a perfect matching M in G. Color this matching with some color, and apply induction on the $(k - 1)$-regular $G - M$ to find a $(k - 1)$-edge-coloring of the remaining edges.

Note that this improves Vizing’s theorem for regular bipartite graphs. Actually, we can drop the regularity condition here:

Theorem 7.50 (König, 1916). For every bipartite graph G, we have $\chi'(G) = \Delta(G)$.

The proof is left as a homework problem.
1 König’s Theorem

Definition. Given a graph G, a vertex cover for G is a set $C \subseteq V(G)$ such that every edge of G is incident with a vertex in C.

The maximum size of a matching in G is denoted by $\nu(G)$, and the minimum size of a vertex cover in G is denoted by $\tau(G)$. (Note that the “size” of a matching is the number of edges in it, while the “size” of a vertex cover is the number of vertices in it.)

Theorem 8.51 (König, 1931). Let $G = (A \cup B, E)$ be a bipartite graph. Then $\nu(G) = \tau(G)$.

Proof. It is clear that $\nu(G) \leq \tau(G)$, because a vertex cover has to cover every edge of the matching with one of the endpoints of the edge. So to cover a matching of size $\nu(G)$, we need at least this many vertices.

Now we show $\nu(G) \geq \tau(G)$. Let M be a maximum matching of G, and as before, let $S = A - V(M)$ and $T = B - V(M)$ be the set of unmatched vertices. As observed last time, if M is maximum, there is no S-T path in D_M.

Let X_B be the set of vertices in B that can be reached from S via a (directed) path in D_M, and let Y_A be the set of vertices in A that cannot be reached from S in D_M. Clearly, X_B is disjoint from T and Y_A is disjoint from A. Note also, that either both ends of an edge in M can be reached from S, or neither of them can be. In the former case, the edge has an end vertex in X_B, in the latter case it has an endpoint in Y_A. Consequently, $|X_B \cup Y_A| = |M|$

We will now show that $X_B \cup Y_A$ is a vertex cover. Suppose not, then there is an edge uv with $u \in A$ and $v \in B$ not covered by this set (i.e., $u \notin Y_A$ and $v \notin X_B$). But uv is not a matching edge, so in D_M, it is directed from u to v. But then $u \in A - Y_A$ can be reached from S in D_M (by definition), so v should also be reachable via the edge uv. This contradicts $v \notin X_B$.

So $X_B \cup Y_A$ is a vertex cover of size $\nu(G)$, implying $\nu(G) \geq \tau(G)$. □

2 Flows

Definition. A network is a graph $G = (V, E)$ with two special vertices, the source $s \in V$ and the sink $t \in V$, together with a non-negative capacity function $c : E \to \mathbb{Z}^+$.

Definition. A flow in a network $G = (V, E)$ is a function $f : V^2 \to \mathbb{R}$ such that

1. $f(u, v) = -f(v, u)$ for any $u, v \in V$ (skew symmetry)

2. $\sum_{w \in N(v)} f(v, w) = 0$ for any $v \in V - \{s, t\}$ (flow conservation)

3. $|f(u, v)| \leq c(u, v)$ for any $uv \in E$ (capacity constraints)

(and $f(u, v) = 0$ for every non-edge vertex pair).
The **value** $|f|$ of a flow is defined as $\sum_{w \in N(s)} f(s, w)$. Our main question of study is: what is the maximum value of a flow in a network G?

A *cut* in a network G is a partition (S, T) of the vertices (so $S \cap T = \emptyset$, $S \cup T = V$) such that $s \in S$ and $t \in T$. For two vertex sets $X, Y \subseteq V$ we define

$$f(X, Y) := \sum_{x \in X, y \in Y} f(x, y), \quad c(X, Y) := \sum_{x \in X, y \in Y} c(x, y).$$

We call $c(S, T)$ the **capacity of the cut** (S, T). The following proposition is intuitively clear.

Proposition 8.52. For every cut (S, T) we have $f(S, T) = |f|$.

Proof. By definition, $|f| = \sum_{w \in N(s)} f(s, w)$. Also, $\sum_{w \in N(v)} f(v, w) = 0$ for all $v \in S - s$, so

$$|f| = \sum_{v \in S} \sum_{w \in N(v)} f(v, w) = \sum_{u, v \in S} \left(f(u, v) + f(v, u)\right) + \sum_{u \in S, v \in T} f(u, v)$$

But here $f(u, v) + f(v, u) = 0$ by the definition of a flow, so the first term cancels. The remaining term is $\sum_{u \in S, v \in T} f(u, v) = f(S, T)$, and the statement follows. \qed

3 Ford-Fulkerson algorithm

So how large can a flow be in a network? Proposition 8.52 implies that for any cut (S, T),

$$|f| = f(S, T) = \sum_{u \in S, v \in T} f(u, v) \leq \sum_{u \in S, v \in T} |f(u, v)| \leq \sum_{u \in S, v \in T} c(u, v) = c(S, T).$$

In particular, the maximum value of a flow is bounded by the minimum capacity of a cut.

Theorem 8.53 (Ford–Fulkerson, 1956). *In every network, the maximum value of a flow equals the minimum capacity of a cut.*

This theorem is also called the **max-flow min-cut** theorem. The proof of the lower bound is algorithmic, and uses the following definition.

Given a flow f, let D_f be the directed graph of edges (u, v) (i.e., $u \rightarrow v$) such that $f(u, v) < c(u, v)$. So $(u, v) \in E(D_f)$ means that the edge uv has unused capacity in the network from u to v. We can call these “non-full” edges. The algorithm repeatedly finds an s-t path of non-full edges, and pushes some extra flow through it to increase the value of f.

Ford-Fulkerson Algorithm to find a flow f and a cut (S, T) such that $|f| = c(S, T)$.

1. Set $f = 0$ for all edges;
2. While there is an s-t path $v_0v_1\ldots v_l$ in D_f (so $v_0 = s$, $v_l = t$):
 a. Let $\varepsilon := \min_{i=1,\ldots,l} \{c(v_{i-1}, v_i) - f(v_{i-1}, v_i)\}$.
 b. For $i = 1, \ldots, l$ put $f(v_{i-1}, v_i) := f(v_{i-1}, v_i) + \varepsilon$ and $f(v_i, v_{i-1}) := f(v_i, v_{i-1}) - \varepsilon$.
3. Define S as the set of all vertices that are reachable by paths from s in D_f.
4. Return f and $(S, V - S)$.

29
Let us verify that the algorithm works correctly. First, note that f satisfies the three conditions in the definition of a flow at each step. Second, since in the network all capacities are integral, we have that $\epsilon > 0$ is an integer at each step, and so $\epsilon \geq 1$. Therefore, since the flow must be finite (bounded by the capacity of any cut), the algorithm terminates in a finite number of steps. Third, $(S, V - S)$ is a cut because $s \in S$ and $t \notin S$. Finally, by the definition of D_f and the set S, we have $f(u, v) = c(u, v)$ for every edge uv with $u \in S, v \in V - S$. Hence $f(S, V - S) = c(S, V - S)$. Since ϵ is always an integer, we even get the following.

Fact 8.54. If c is integral, then there is an integer maximum flow.

Note that for the algorithm to stop, it was important that c takes integer values. The same argument works for rational c, as well (e.g., by multiplying all values with a number to make c integral), but the algorithm might not stop if c has non-rational values (see problem set). However, Theorem 8.53 holds for any non-negative real capacity function. This can be proved by approximating it with a rational function and taking the limit. Alternatively, Edmonds and Karp showed that the algorithm stops in a bounded number of steps no matter what the capacity function is, provided that it chooses the shortest s-t path of D_f in step 2.

4 DIRECTED NETWORKS

Flows turn out to be more applicable in directed networks. Everything above works the same with some slight differences. Note that c is now defined on a digraph, so $c(u, v)$ and $c(v, u)$ are not related. Also, the capacity of a cut $c(S, T) = \sum_{u \in S, v \in T} c(u, v)$ now only counts edges directed from S to T. We need to change two things in the definitions:

- **Definition of flows:**
 1. is dropped; 2. is changed to $\sum_w f(v, w) = \sum_w f(w, v)$ for every $v \in V - \{s, t\}$; 3. is changed to $0 \leq f(u, v) \leq c(u, v)$ for directed edges (u, v).

- **In D_f:** edge (u, v) is now added if $f(u, v) < c(u, v)$ or $f(v, u) > 0$, and the corresponding term in the definition of ϵ (free capacity from u to v) is $c(u, v) - f(u, v)$ or $f(v, u)$

Application: Proof of Theorem 8.51 via Ford-Fulkerson.

Given $G = (A \cup B, E)$, let us create a network by adding a source s that sends an edge of capacity 1 to all vertices of A, and adding a sink t that receives an edge of capacity 1 from all vertices of B. We also orient the edges of G from A to B give them infinite capacities. (Think of ∞ as some large number bigger than $|A|$.)

Let f be an integer maximum flow. We claim that the G-edges with positive flow form a matching. Indeed, each such edge has $f(u, v) \geq 1$. If two such edges shared a vertex $u \in A$, then the inflow at u is at most 1 and the outflow is at least 2, which is not possible. Similarly, two such edges cannot meet in B, either. Hence $\nu(G) \leq |f|$.

Now let (S, T) be a minimum cut. Then $(S \cap B) \cup (T \cap A)$ is a vertex cover, because any uncovered edge (u, v) with $u \in S \cap A$ and $v \in T \cap B$ would contribute ∞ capacity to $c(S, T)$ (but $c(S, T) \leq c(s, V - S) \leq |A| < \infty$). Here every s-$(T \cap A)$ edge and every $(S \cap B)$-t edge contributes 1 to $c(S, T)$, so we get $\tau(G) \leq |S \cap B| + |T \cap A| \leq c(S, T)$. Hence

$$\tau(G) \leq c(S, T) = |f| \leq \nu(G),$$

which, together with the trivial $\nu(G) \leq \tau(G)$ finishes the proof. \qed
Lecture 9
Connectivity.

1 Menger’s theorem

Next we will look at what the Ford-Fulkerson theorem says about networks where every edge has capacity 1. The results in this section hold for directed and undirected graphs, as well. We use the following notation: if $G = (V, E)$ is a graph and $W \subseteq V, F \subseteq E$, then $G - W$ is the graph with vertex set $V \setminus W$ and edge set $E \setminus \{e \in E : e \cap W \neq \emptyset\}$, and the graph $G \setminus F$ is the graph with vertex set V and edge set $E \setminus F$.

Definition. Let $G = (V, E)$ be a (directed) graph, and $s, t \in V$.
We say that two paths from s to t (s-t paths) in G are edge-disjoint, if they don’t share any edges. We say that they are internally vertex-disjoint, if they don’t share any vertices other than s and t.
A subset $F \subseteq E$ is an s-t edge separator, if $G - F$ contains no s-t path. A subset $W \subseteq V$ is an s-t vertex separator, if $G - W$ contains no s-t path.

The following theorem is one of the cornerstones of graph theory.

Theorem 9.55 (Menger). In a (directed) graph $G = (V, E)$ with $s, t \in V$:

1. Maximum number of edge-disjoint s-t paths = minimum size of an s-t edge separator.

2. If $(s, t) \notin E$, then:
Max number of internally vertex-disjoint s-t paths = min size of an s-t vertex separator.

Proof. “\leq” is clear in both statements: To “destroy” all the s-t paths, we need to delete a distinct edge/vertex from each of them. So any separator has size at least the number of paths.
Now we show “\geq” for directed G.

1. Take the network on G where all edges have capacity 1. We will prove
\[
\max \# \text{ s-t edge-disjoint paths} \geq \max \text{ flow} = \min \text{ cut} \geq \min \text{ s-t edge separator}
\]
For the first inequality, take a maximum integer flow f. If $|f| > 0$, then there is an s-t path P using flow edges. Removing P from f decreases the value of f by 1. More precisely, we “push back” a capacity-1 flow on P to decrease $|f|$ by 1. Crucially, as all capacities are 1, the new flow does not use any edge of P. So if we repeat this step $|f|$ times, we get $|f|$ edge-disjoint s-t paths, just what we wanted.

The equality in the middle is just the max-flow min-cut theorem (Theorem 8.53). For the last inequality, note that the edges appearing in a min cut form an s-t edge separator. As the edge capacities are all 1, the capacity of this cut is exactly the number of edges in the edge separator.

2. The key to ensure edge-disjointness in the first statement was to limit the edge capacities to 1. To limit the capacities of vertices, we need a trick. Let us define the network \tilde{G} based on G as follows:
• for every vertex \(v \in V \), we add two vertices \(v_{in} \) and \(v_{out} \) to \(\tilde{G} \), connected by a directed edge \((v_{in}, v_{out})\) of capacity 1,
• for every directed edge \((u, v)\) \(\in E\), we add \((u_{out}, v_{in})\) of capacity \(\infty\) to \(\tilde{G} \).

Again, we prove

\[
\text{max \# disjoint } s-t \text{ paths} \geq \text{max } s_{out}-t_{in} \text{ flow in } \tilde{G} = \text{min cut} \geq \text{min } s-t \text{ separator.}
\]

For the first inequality, take a maximum integer \(s_{out}-t_{in} \) flow \(f \) in \(\tilde{G} \). If \(|f| > 0\), then there is an \(s-t \) path \(P \) using flow edges. As \((s, t) \notin E\), \(P \) must use a “vertex edge” \((v_{in}, v_{out})\), and so the capacity of the path \(P \) is 1. This means that pushing back capacity 1 on \(P \) decreases \(|f|\) by one, and ensures that the “vertex edges” appearing in \(P \) are not used by the remaining flow. So repeating this we get \(|f| \) paths in \(\tilde{G} \), and the corresponding paths in \(G \) are internally vertex disjoint.

The equality in the middle is again the max-flow min-cut theorem. For the last inequality, note that the min cut has finite capacity (because \((s, t) \notin E\)), so all edges in the cut are “vertex edges” corresponding to a vertex separator. They all have capacity 1, so the capacity of this cut is exactly the number of vertices in the separator.

To prove the undirected variants of Menger’s theorem, one can just replace every undirected edge with two directed edges (one in each direction), and apply directed Menger to it. \(\square\)

2 Connectivity

From now on, we again talk about undirected graphs.

Definition. \(G = (V, E) \) is \(k \)-connected if \(|V| > k \) and \(G - X \) is connected for any set \(X \) of at most \(k - 1 \) vertices. The greatest \(k \) such that \(G \) is \(k \)-connected is the connectivity \(\kappa(G) \).

\(G \) is \(k \)-edge-connected if \(G \setminus F \) is connected for every set \(F \) of at most \(k - 1 \) edges. The greatest \(k \) such that \(G \) is \(k \)-edge-connected is the edge-connectivity \(\kappa'(G) \) of \(G \).

Let us make some observations.

- \(G \) connected \iff \(G \) is 1-connected \iff \(G \) is 1-edge-connected.
- If \(G \) is \(k \)-(edge-)connected, then it is \((k-1)-(edge-)\)connected.
- \(\kappa(K_2) = s - 1, \kappa(C_k) = \kappa'(C_k) = 2 \)

Let \(G \) be a connected graph. A bridge is an edge \(e \) such that \(G \setminus e \) is disconnected. A cut vertex is a vertex \(v \) such that \(G - v \) is disconnected.

- \(G \) is 2-connected \iff \(G \) has no cut vertex.
- \(G \) is 2-edge-connected \iff \(G \) has no bridge.
Theorem 9.56 (Global version of Menger’s theorem). Let $G = (V, E)$ be a graph.

1. G is k-edge-connected \iff G contains k edge-disjoint paths between any two vertices
2. G is k-connected \iff G contains k internally vertex-disjoint paths between any two vertices

This is a strong characterization of k-connected graphs that easily implies the following non-trivial facts.

Proposition 9.57. $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.

Proof. $\kappa'(G) \leq \delta(G)$ is trivial, because deleting all edges touching a vertex disconnects G.

To show $\kappa(G) \leq \kappa'(G)$, note that by Theorem 9.56 any two vertices of G are connected by $\kappa(G)$ internally vertex-disjoint paths. But then these paths are edge-disjoint, so any two vertices are connected by $\kappa(G)$ edge-disjoint paths, hence G is $\kappa(G)$-edge-connected by the other direction of Theorem 9.56.

Proposition 9.58. G is 2-connected \iff any 2 vertices of G are on a cycle.

Proof. By Theorem 9.56, G is 2-connected if and only if any two vertices are connected by 2 internally vertex-disjoint paths. But this happens if and only if the two vertices are on a cycle (the union of the two paths).

Proof of Theorem 9.56. After the local version, this is not hard to prove.

1. \Leftarrow: If s and t are connected by k edge-disjoint paths, any s-t edge-separator needs to contain at least one edge from each path. As this is true for any pair of vertices, there is no set F of at most $k - 1$ edges such that deleting F disconnects G, thereby separating some two vertices.

\Rightarrow: If G is k-edge-connected, then there is smallest s-t edge separator has size at least k for every $s, t \in V$. Then by Theorem 9.55 s and t are connected by k edge-disjoint paths for any $s, t \in V$.

2. \Leftarrow: The above argument works the same with vertices instead of edges.

\Rightarrow: Again the same argument works, except for adjacent pairs $s, t \in V$. The problem is that we cannot apply Menger’s theorem if $st \in E$. We fix this issue by deleting it, so let $G' = G \setminus st$.

Claim. G' is $(k - 1)$-connected.

Using this claim, we can apply Theorem 9.55 to G' and get $k - 1$ internally vertex-disjoint s-t paths in G'. Together with the edge st, we get k such paths in G, as needed. All we have left is to prove this claim.

Proof of Claim. Suppose not, i.e., there is a set X of at most $k - 2$ vertices such that $G' - X$ is disconnected. Note that $G - X$ is not disconnected (G is k-connected), and $G' - X = (G - X) \setminus st$, so s and t must be in different components of $G' - X$. Now as G is k-connected, it has at least $k + 1$ vertices, so there is a vertex w not in X and different from s, t. We may assume that w and t are in different components of $G' - X$ (if not, then w and s are). But then $X' = X \cup s$ is a set of $k - 1$ vertices such that $G - X = G' - X$ (because deleting s deletes the edge st), and so $G - X$ is disconnected. This contradicts G being k-connected.
1 TRIANGLE-FREE GRAPHS

Let G be a graph on n vertices that does not contain any triangle as a subgraph (in other words, G is K_3-free). What is the maximum number of edges that G can have?

With a bit of thinking one can arrive at the conjecture that $K_{\lfloor n^2/4 \rfloor, \lceil n^2/4 \rceil}$ is optimal, i.e., the answer is $\lfloor n^2/4 \rfloor \cdot \lceil n^2/4 \rceil$. This is indeed the case, although the proof below looks simpler than it actually is.

Theorem 10.59 (Mantel, 1907). A K_3-free graph on n vertices contains at most $\lfloor n^2/4 \rfloor$ edges.

Proof. Let v be a vertex in G of maximum degree Δ, and let $S = N(G)$ be its neighborhood (so $|S| = \Delta$). Note that there is no edge with both endpoints in S, otherwise we would get a triangle with v. So every edge of G touches a vertex in $V(G) \setminus S$. Also, every vertex touches at most Δ edges, so the total number of edges is at most

$$\Delta |V(G) \setminus S| = \Delta (n - \Delta) \leq \lfloor n^2/4 \rfloor.$$

(At the inequality in the middle, we used the easy fact that $ab \leq \left(\frac{a+b}{2}\right)^2$.)

As an application, we answer the following question.

Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be vectors such that $|a_i| \geq 1$ for each $i \in \{1, \ldots, n\}$. What is the maximum number of pairs satisfying $|a_i + a_j| < 1$?

Proposition 10.60. There are at most $\lfloor n^2/4 \rfloor$ such pairs.

Proof. Define the graph G on $\{1, \ldots, n\}$ where ij is an edge iff $|a_i + a_j| < 1$. It is enough to show that G is triangle-free. But this is indeed the case, since for any $i, j, k \in [n]$,

$$|a_i + a_j|^2 + |a_j + a_k|^2 + |a_k + a_i|^2 = |a_i + a_j + a_k|^2 + |a_i|^2 + |a_j|^2 + |a_k|^2 \geq 3,$$

so at least one of $|a_i + a_j|^2, |a_j + a_k|^2, |a_k + a_i|^2$ is at least 1.

2 CLIQUES

Instead of triangles, we can ask the same question for arbitrary graphs: For a given graph H, what is the maximum number of edges that an H-free graph on n vertices can have?

Definition. The extremal number or Turán number of H, $\text{ex}(n, H)$, is the maximum value of $|E(G)|$ among graphs G on n vertices containing no H as a subgraph.

As a generalization of the triangle-free case, notice that dense graphs not having K_{r+1} as a subgraph can be obtained by dividing the vertex set V into r pairwise disjoint subsets $V = V_1 \cup \cdots \cup V_r$, $|V_i| = n_i$, $n = n_1 + \cdots + n_r$, joining two vertices if and only if they lie in distinct sets V_i, V_j. We denote the resulting graph by K_{n_1, \ldots, n_r} (this is called a complete r-partite graph). It has $\sum_{i<j} n_i n_j$ edges. Assuming n is fixed, we get the maximum number of edges among such graphs when we divide the numbers n_i as evenly as possible, that is
Proof. We apply induction on r. The case $r = 1$ is trivial (actually, the case $r = 2$ is Mantel’s theorem). Now assume $r \geq 2$ and let G be a K_{r+1}-free graph on n vertices. Let v be a vertex of maximum degree $\Delta = \Delta(G)$ and let $S = N(v)$ be the neighborhood of v and $T = V(G) \setminus S$ be its complement. Then $|S| = \Delta$. As G contains no $(r+1)$-clique and v is adjacent to all vertices of S, we note that G contains no K_r with all vertices in S.

We now construct another K_{r+1}-free graph H on $V(G)$ that has at least as many edges as G. We define T to be an independent set of H, but add all edges between S and T to H. Finally, on S, let H be isomorphic to $T(\Delta, r - 1)$. Then H is a complete r-partite graph, so it clearly is K_{r+1}-free. To see that H has no fewer edges than G, let e_T denote the number of edges in G touching T, and let e_S denote the number of edges not touching T (i.e., with both endpoints in S). Then $|E(G)| = e_T + e_S$.

On the other hand, we know that $e_T \leq \Delta |T|$ because each vertex of T has degree at most Δ in G, and we also know that $e_S \leq |E(T(\Delta, r - 1))|$ using induction and the fact that G is K_r-free on S. But H contains exactly $\Delta |T|$ edges touching T and $|E(T(\Delta, r - 1))|$ edges not touching T, so indeed $|E(G)| = e_T + e_S \leq |E(H)|$.

This argument shows that $|E(G)| \leq |E(H)|$ for a complete r-partite H. But we have seen that $T(n, r)$ maximizes the number of edges among complete r-partite graphs, so in fact we have $|E(G)| \leq |E(H)| \leq |E(T(n, r))|$, as needed.

To prove uniqueness, note that equality can only hold in our previous bound if S induces the complete $r - 1$-partite graph $T(\Delta, r - 1)$ (using the induction hypothesis), and T touches exactly Δn_r edges in G. But the latter can only happen if T is an independent set in G. Indeed, the sum of the degrees of the vertices in T counts each edge spanned by T twice, and each edge connecting T and S once. As Δ is the maximum degree in G, the sum of degrees is at most Δn_r, so T can only touch this many edges if it spans none of them. But then G is r-partite and since it has the maximum number of edges, $G = T(n, r)$. \hfill \QED

Turán’s theorem shows that $\text{ex}(n, K_{r+1})$ is essentially equal to $(1 - \frac{1}{r}) \frac{n^2}{2}$ (they are equal when n is divisible by r and they differ by a constant when n is not divisible by r). But what happens for other graphs? What is $\text{ex}(n, H)$? Surprisingly, the answer pretty much only depends on the chromatic number of H (at least when $\chi(H) \geq 3$):
Theorem 10.62 (Erdős-Stone-Simonovits). Let H be a graph of chromatic number $\chi(H) = r + 1$. Then for every $\varepsilon > 0$ and large enough n,

$$
\left(1 - \frac{1}{r}\right) \cdot \left(\frac{n}{2}\right) \leq \text{ex}(n, H) \leq \left(1 - \frac{1}{r}\right) \cdot \left(\frac{n}{2}\right) + \varepsilon n^2.
$$

3 Bipartite graphs

For bipartite H, the Erdős-Stone-Simonovits theorem only says that $\text{ex}(n, H) = o(n^2)$. It is one of the biggest questions in graph theory to determine the order of magnitude of the extremal number of bipartite graphs. There are very few graphs for which we know the answer. One such example is $H = C_4 = K_{2,2}$.

Theorem 10.63. If a graph G on n vertices contains no $K_{2,2}$, then

$$|E(G)| \leq \left\lfloor \frac{n}{4} (1 + \sqrt{4n - 3}) \right\rfloor.$$

Proof. Let G be a graph on n vertices without a 4-cycle. Let S be the set of “cherries”, i.e., pairs $(u, \{v, w\})$ where u is adjacent to both v and w, with $v \neq w$:

We will count the elements of S of in two different ways. Summing over u, we find $|S| = \sum_{u \in V(G)} \left(\frac{d(u)}{2}\right)$. On the other hand (and this is the crucial observation): every pair $\{v, w\}$ has at most one common neighbor (because G is $K_{2,2}$-free), so $|S| \leq \binom{n}{2}$.

The rest of the proof is just calculations. So far we have

$$\sum_{u \in V} \left(\frac{d(u)}{2}\right) \leq \left(\frac{n}{2}\right)$$

or equivalently,

$$\sum_{u \in V} d(u)^2 \leq n(n - 1) + \sum_{u \in V} d(u).$$

Now applying the Cauchy-Schwarz inequality to the vectors $(d(u_1), \ldots, d(u_n))$ and $(1, \ldots, 1)$, we get $(\sum_{u \in V} d(u))^2 \leq n \sum_{u \in V} d(u)^2$. This, together with (1), implies

$$\left(\sum_{u \in V} d(u)\right)^2 \leq n^2(n - 1) + n \sum_{u \in V} d(u).$$

Here the sum of the degrees is $2|E(G)|$, so we get $4|E(G)|^2 \leq n^2(n - 1) + 2n|E(G)|$. Or equivalently,

$$|E(G)|^2 - \frac{n}{2}|E(G)| - \frac{n^2(n - 1)}{4} \leq 0.$$

Solving this quadratic equation yields the theorem. \qed
The last theorem shows that \(\text{ex}(n, K_{2,2}) = O(n^{3/2}) \). This upper bound is tight in the sense that there are \(K_{2,2} \)-free graphs on \(n \) vertices with \(\Omega(n^{3/2}) \) edges, as shown below.

Example. Let \(p \geq 3 \) be a prime, and \(G_0 \) be the graph on the vertex set \(\mathbb{Z}_p \times \mathbb{Z}_p \) where \((x,y)\) and \((x_1,y_1)\) are connected by an edge and only if \(x + x_1 = yy_1 \). (Technically this is a multigraph as it has loops).

Note that \(G_0 \) is \(p \)-regular. Indeed, for every \(x,y,y_1 \) there is a unique choice of \(x_1 \) such that \((x,y)\) and \((x_1,y_1)\) are adjacent. Also, loops correspond to solutions of the equation \(2x = y^2 \). There is therefore one loop for every choice of \(y \), giving \(p \) loops in total. Let \(G \) be the graph we obtain by deleting the loops from \(G_0 \).

Now, \(G \) has \(n = p^2 \) vertices, and \(\frac{1}{2}(np - p) = (\frac{1}{2} + o(1))n^{3/2} \) edges. It also has no \(K_{2,2} \)s. Indeed, for any \((x_1,y_1)\) and \((x_2,y_2)\), a vertex \((x,y)\) adjacent to both of them satisfies \(x + x_1 = yy_1 \) and \(x + x_2 = yy_2 \), so \(x_1 - x_2 = y(y_1 - y_2) \). If \(y_1 = y_2 \) then \(x_1 = x_2 \), so if our chosen vertices \((x_1,y_1)\) and \((x_2,y_2)\) were distinct then \(y_1 - y_2 \neq 0 \). Then \(y \) is uniquely determined from the last equation, and this defines \(x \), as well.

It is not too hard to generalize the proof of Theorem 10.63 to arbitrary \(K_{s,t} \), and get the following theorem:

Theorem 10.64 (Kővári-Sós-Turán, 1954). *For any integers \(1 \leq s \leq t \), there is a constant \(c \) such that \(\text{ex}(n, K_{s,t}) \leq cn^{2 - \frac{1}{s}} \).*

However, lower bound constructions where the number of edges has the same order of magnitude is only known for \(s = t = 2 \) (see above) and \(s = 2, t = 3 \).

For even cycles, the following result is the best known upper bound. Once again, matching constructions are only known for \(k = 2, 3, 5 \).

Theorem 10.65 (Bondy-Simonovits, 1974). *For any integer \(2 \leq k \), there is a constant \(c \) such that \(\text{ex}(n, C_{2k}) \leq cn^{1 + \frac{1}{k}} \).*

We do not prove these theorems here.
Lecture 11

The probabilistic method.

Probabilistic tools turn out to be extremely useful for certain combinatorial problems. At first, applications might feel like magic: problems that have nothing to do with probability often have simple solutions if we introduce some randomness. Deeper theoretical results (like the so-called Szemerédi regularity lemma) show some inherent connection between graphs and random structures.

However, (fortunately or unfortunately) this is not the course to go this deep, so we will have to stick with the magical results.

1 Review of basic notions

We will use standard notions from probability theory, although in a quite restricted setting: we will always work with a probability space that is defined on a finite base set Ω with a probability mass function $p : \Omega \to [0, 1]$ satisfying $\sum_{\omega \in \Omega} p(\omega) = 1$. The events in this probability space are all subsets $E \subseteq \Omega$, and the probability that E holds is $P[E] = \sum_{\omega \in E} p(\omega)$.

A random variable is just a function $X : \Omega \to \mathbb{R}$, and the expected value or expectation of a random variable X is

$$E[X] = \sum_{x \in \mathbb{R}} x \cdot P[X = x] = \sum_{\omega \in \Omega} p(\omega) \cdot X(\omega).$$

A very important fact (that can be easily seen from the right-hand side of this equality) is the linearity of expectation, i.e., that for any two random variables X and Y and any real c, we have $E[X + Y] = E[X] + E[Y]$ and $E[cX] = cE[X]$.

Two events E_1 and E_2 are said to be independent if $P[E_1 \cap E_2] = P[E_1] \cdot P[E_2]$. For more than two events, E_1, \ldots, E_k are independent if for any $I \subseteq \{1, \ldots, k\}$, we have

$$P \left[\bigcap_{i \in I} E_i \right] = \prod_{i \in I} P[E_i].$$

Similarly, the random variables X_1, \ldots, X_k are independent if for any x_1, \ldots, x_k and any $I \subseteq \{1, \ldots, k\}$, we have

$$P \left[\bigcap_{i \in I} X_i = x_i \right] = \prod_{i \in I} P[X_i = x_i].$$

2 Simple applications

As a first example, let us give a new proof of the following fact. In Lecture 2, we gave an algorithmic proof, this time we provide a probabilistic argument.

Proposition 11.66. Any graph G contains a bipartite subgraph H with $|E(H)| \geq |E(G)|/2$.

Proof. Let us take a random partition of the vertices into parts A and B, where each vertex is independently assigned to A or B with probability $1/2$. So Ω is the set of all partitions. For every edge $e \in E(G)$, let X_e be the indicator random variable for the event that e “crosses”
between \(A \) and \(B \). Then \(X = \sum_{e \in E(G)} X_e \) is a random variable that counts the number of edges crossing between \(A \) and \(B \). Thus the expected number of edges crossing is

\[
\mathbb{E}[X] = \mathbb{E}\left[\sum_{e \in E} X_e \right] = \sum_{e \in E} \mathbb{E}[X_e].
\]

Here for an edge \(e = uv \), we have

\[
\mathbb{E}[X_e] = \mathbb{P}[e \text{ crossing}] = \mathbb{P}[u \in A, v \in B] + \mathbb{P}[u \in B, v \in A] = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}.
\]

so \(\mathbb{E}[X] = \sum_{e \in E} 1/2 = |E(G)|/2 \). But then there must be a partition \(\omega \in \Omega \) such that \(X(\omega) \geq |E(G)|/2 \) (otherwise the expectation would be strictly smaller).

Note that this is only an existence proof. We do not get any information on how to find such a subgraph.

For our next application, let us introduce the notion of hypergraphs, a generalization of graphs. A hypergraph \(H \) is a pair \((V, E)\), where \(V \) is a finite vertex set, and \(E \) is a collection of subsets of \(V \), called hyperedges. An \(r \)-uniform hypergraph is one where all hyperedges contain exactly \(r \) vertices. (So graphs are 2-uniform hypergraphs.) We can generalize graph colorings to hypergraph coloring in a straightforward manner: we say that a hypergraph is \(k \)-colorable if its vertices can be colored with \(k \) colors so that there is no monochromatic edge, i.e., every edge gets at least 2 different colors.

Proposition 11.67. Every \(r \)-uniform hypergraph \(H \) with fewer than \(2^{r-1} \) edges is 2-colorable.

Proof. Consider a random coloring where every vertex of \(H \) is colored red or blue with probability 1/2, independently of the other vertices. Then \(\Omega \) is the set of all vertex colorings. Let \(e_1, \ldots, e_m \) be the edges of \(H \), where \(m < 2^r \), and let \(E_i \) be the event that all vertices of \(e_i \) get the same color. What is the probability that \(E_i \) holds?

\[
\mathbb{P}\{\text{all vertices of } e_i \text{ are red} \} = (1/2)^r,
\]

\[
\mathbb{P}\{\text{all vertices of } e_i \text{ are blue} \} = (1/2)^r.
\]

But then \(\mathbb{P}[\bigcup_{i=1}^m E_i] \leq \frac{m}{2^{r-1}} < 1 \), so with positive probability none of the \(E_i \) holds, i.e., all edges get 2 colors. In particular, there is some red-blue coloring \(\omega \in \Omega \) where no edge is monochromatic.

Alternatively, we could have defined the indicator variables \(X_i \) of \(e_i \) being monochromatic. Then \(X = \sum_{i=1}^m X_i \) counts the number of monochromatic edges, and

\[
\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^m X_i \right] = \sum_{i=1}^m \mathbb{E}[X_i] = \sum_{i=1}^m \mathbb{P}[E_i] = \frac{m}{2^{r-1}} < 1.
\]

Hence there is a coloring where \(X < 1 \), and since \(X \) is an integer, this must mean \(X = 0 \).

For our third example, suppose we have sets \(A_1, \ldots, A_m \) and \(B_1, \ldots, B_m \) such that \(|A_i| = a \) and \(|B_i| = b \) for every \(i \), and they also satisfy \(A_i \cap B_j = \emptyset \) and \(A_i \cap B_j \neq \emptyset \) for every \(i \neq j \). (So we have disjoint pairs of sets \((A_i, B_i) \), that pairwise intersect each other in some sense.) We call this an intersecting family of set pairs. The question we are interested in is how large \(m \) can be in terms of \(a \) and \(b \).

For example, we can take a base set \(X \) of size \(a + b \), and take all \(\binom{a+b}{a} \) partitions of it into some \(A_i \) of size \(a \) and \(B_i \) of size \(b \). This gives a good construction for \(m = \binom{a+b}{a} \). As it turns out, it is impossible to give a construction for larger \(m \), even if the base set is allowed to be arbitrarily large. This is called the Bollobás set pairs inequality.
Lemma 11.68 (Bollobás, 1965). \(m \leq \binom{a+b}{a} \).

Proof. Let \(X = \bigcup_{i=1}^{m} A_i \cup B_i \) be the set of all \(N = |X| \) elements appearing in the set pairs. Consider a random permutation (ordering) of the vertices chosen uniformly. So \(\Omega \) is the set of all permutations of \(X \), and each has probability \(\frac{1}{N!} \).

Let \(E_i \) be the event that the elements of \(A_i \) precede the elements of \(B_i \) in this random permutation. Then \(\Pr[E_i] = \frac{1}{\binom{a+b}{a}} \). Indeed, this event only depends on the relative positions of the elements in \(A_i \cup B_i \), so we can ignore all other elements in \(X \). Also, out of the \(\binom{a+b}{a} \) options for picking the places of \(A_i \) among these \(a+b \) elements, only the one we pick the first \(a \) places is in \(E_i \).

Crucially, the event \(E_i \) is disjoint from every other event \(E_j \). Indeed, if \(E_i \) holds, then \(A_i \) precedes \(B_i \). Also, from the intersection assumption, there must be elements \(x \in A_i \cap B_j \) and \(y \in B_i \cap A_j \). But then \(x \in B_j \) precedes \(y \in A_j \), so \(E_j \) cannot hold. Now putting everything together, we get (using the disjointness for the middle equality)

\[
1 \geq \Pr \left[\bigcup_{i=1}^{m} E_i \right] = \sum_{i=1}^{m} \Pr[E_i] = \frac{m}{\binom{a+b}{a}},
\]

and thus \(m \leq \binom{a+b}{a} \). \(\square \)

3 Saturation

We say that a graph \(G \) is \(H \)-saturated if it is a maximal \(H \)-free graph, i.e., if \(G \) does not contain \(H \) as a subgraph, but if we add any missing edge to \(G \), we create a subgraph isomorphic to \(H \). The minimum number of edges in an \(H \)-saturated graph on \(n \) vertices is called the saturation number, and is denoted by \(\text{sat}(n,H) \). Note that this saturation problem is in some sense the opposite of the Turán problem: \(\text{ex}(n,H) \) is the maximum number of edges in an \(H \)-saturated graph.

It is easy to check that \(\text{sat}(n,K_3) = n-1 \), because the star \(K_{1,n-1} \) is \(K_3 \)-saturated, but there is no disconnected \(K_3 \)-saturated graph. In general, for cliques we have the following.

\[
\text{sat}(n,K_s) = \binom{n}{2} - \left(\binom{n-s+2}{2} \right) = (s-2)n - \binom{s-2}{2}.
\]

Proof. The upper bound is a construction: Let \(G \) be a clique on some \(s-2 \) vertices \(A \), together with all edges connecting \(A \) with the \(n-s+2 \) remaining vertices \(B \). This \(G \) is \(K_s \)-saturated, because its missing edges are in \(B \), and adding such an edge \(uv \) creates a clique on \(A \cup \{u,v\} \). Also, \(G \) has \(\binom{n}{2} - \binom{n-s+2}{2} \) edges because there are \(\binom{n-s+2}{2} \) missing edges in \(B \).

For the lower bound, take a \(K_s \)-saturated \(G = (V,E) \), and let \(f_1, \ldots, f_m \) be the missing edges in \(G \). Then the addition of each \(f_i = u_iv_i \) creates an \(s \)-clique on some vertex set \(X_i \). Let us define the sets \(A_i = \{u_i, v_i\} \) and \(B_i = V - X_i \). We claim that they form a intersecting family of set pairs.

Indeed, \(|A_i| = 2, B_i = n-2 \) and \(A_i \cap B_i = \emptyset \) are clear from the definition. We just need to check that \(A_i \cap B_j \neq \emptyset \) for every \(i \neq j \). But this is clear, because we know that \(f_j \) is the only missing edge in \(X_j \). In particular, \(f_i \) has at least one endpoint outside \(X_j \), i.e., in \(B_j = V - X_j \). So \(A_i \cap B_j \) is non-empty: it contains this endpoint.

Now Lemma 11.68 gives \(m \leq \binom{n-s+2}{2} \). But since \(m \) is the number of missing edges, this implies that \(G \) has at least \(\binom{n}{2} - \binom{n-s+2}{2} \) edges. \(\square \)
Lecture 12
Ramsey’s theorem.

1 Ramsey’s theorem. Upper bounds

Proposition 12.70. If the edges of K_6 are colored red and blue, then there is a red K_3 or a blue K_3.

Proof. Pick a vertex v. It has five incident edges, among which there must be three red edges or three blue edges. Without loss of generality, assume there are three red edges vx, vy, vz. If one of the edges xy, xz, yz is red, then it forms a red K_3 together with the two corresponding edges to v. Otherwise, the edges xy, xz, yz are all blue, so they form a blue K_3.

We say that a clique in an edge-colored graph is monochromatic if all the edges in the clique have the same color.

Theorem 12.71 (Ramsey, 1930). For every positive integer s, there is an N such that any 2-edge-colored K_N contains a monochromatic clique of size s.

The smallest such N is called the Ramsey number of s. More generally,

Definition. The Ramsey number $R(s, t)$ is the smallest integer N such that whenever the edges of K_N are colored red or blue, this coloring contains a red K_s or a blue K_t.

Proposition 12.70 thus states that $R(3, 3) \leq 6$. In fact, we have $R(3, 3) = 6$, because the edges of K_5 can be colored with red and blue without creating a monochromatic K_3: We can take a C_5 in K_5 and color its edges red; the remaining edges form another C_5, which we color blue.

Ramsey’s theorem, as stated above, says that $R(s, s)$ is always finite. The original statement is a lot more general, for example it also implies that $R(s, t)$ is finite. However, the original bounds that Ramsey got were quite weak. The main results of this lecture are the following lower and upper bounds on $R(s, s)$ (of course, the upper bound serves as a proof for Ramsey’s theorem).

Theorem 12.72 (Erdős-Szekeres, 1935; Erdős, 1947). For every $s \geq 2$,

$$2^{s/2} \leq R(s, s) \leq 2^{2s}$$

Although these bounds seem far apart from each other (and indeed they are), they are basically the state of the art today, as well: no improvement in the exponent is known for either bound. Closing the gap is one of the biggest open problems in combinatorics.

Let us start with the proof of the upper bound. It is actually easier to prove a stronger result:
Theorem 12.73 (Erdős-Szekeres, 1935). For every \(s, t \geq 3 \) we have \(R(s, t) \leq \binom{s+t-2}{s-1} \).

This readily implies \(R(s, s) \leq \binom{2s-2}{s-1} \leq 2^{2s-2} \).

Proof. We apply induction on \(s + t \).

For \(s = 2 \) the statement is true, because clearly \(R(2, t) = t \). Similarly, for \(t = 2 \), we have \(R(s, 2) = s \), so the bound in the theorem holds. This will be our base case.

For the induction step, it is enough to show the following (as \(\binom{s+t-2}{s-1} = \binom{s+t-3}{s-2} + \binom{s+t-2}{s-1} \)).

\[
R(s, t) \leq R(s-1, t) + R(s, t-1).
\]

Let \(N = R(s-1, t) + R(s, t-1) \) and consider a coloring of the edges of \(K_N \) with red and blue. Pick a vertex \(v \). It has either at least \(R(s-1, K_t) \) red edges or at least \(R(s, t-1) \) blue edges. The cases are symmetric, so we can assume without loss of generality that \(v \) has \(R(s-1, t) \) red edges. Consider the 2-colored complete graph on the corresponding \(R(s-1, t) \) neighbors of \(v \). By the definition of \(R(s-1, t) \), this graph has either a red \(K_{s-1} \) or a blue \(K_t \). In the first case the red \(K_{s-1} \) together with \(v \) will form a red \(K_s \), and in the second case we get a blue \(K_t \), so we get the monochromatic clique we were looking for in both cases. This establishes \([2]\) and finishes the proof.

Before proving the lower bound, let us show an interesting application. We need to define **multicolor Ramsey numbers** first.

Definition. The \(k \)-color Ramsey number \(R_k(s_1, \ldots, s_k) \) is the smallest integer \(N \) such that whenever the edges of \(K_N \) are colored with \(k \) colors, there is an \(i \) such that the coloring contains a \(K_{s_i} \) in color \(i \).

The following simple statement implies (using induction on \(k \)) that \(R_k(s_1, \ldots, s_k) \) is finite for any choice of \(k, s_1, \ldots, s_k \). The proof is left as an exercise.

Proposition 12.74. We have \(R_k(s_1, \ldots, s_k) \leq R(s_1, \ldots, s_{k-2}, R(s_{k-1}, s_k)) \).

We finish the section with the following cute corollary.

Corollary 12.75 (Schur, 1916). For every \(k \) there exists an \(N \) such that whenever the numbers \(\{1, \ldots, N\} \) are \(k \)-colored, there are \(x, y, z \) of the same color that satisfy \(x + y = z \).

Proof. We will show that \(N = R_k(3) - 1 = R_k(3, \ldots, 3) - 1 \) works. So let \(c : \{1, \ldots, N\} \to \{1, \ldots, k\} \) be an arbitrary \(k \)-coloring of the integers. We define the \(k \)-edge-coloring \(c' \) on \(K_{N+1} \) whose vertex set is \(\{1, \ldots, N+1\} \), as follows:

\[
c'(ij) = c(|i - j|).
\]

As this is a \(k \)-edge-colored complete graph on \(R_k(3) \) vertices, it must contain a monochromatic triangle \(hij \) (with \(h < i < j \), say). But then \(x = j - i, y = i - h \) and \(z = j - h \) are numbers in \(\{1, \ldots, N\} \) of color \(c(x) = c'(ij) \), \(c(y) = y'(hi) \), \(c(z) = c'(hj) \), which are all the same, and they also satisfy \(x + y = (j - i) + (i - h) = j - h = z \), proving our result. \(\square \)
2 RAMSEY NUMBERS. LOWER BOUNDS

We proceed to the lower bound. Its proof is one of the first applications of the probabilistic method in combinatorics, and was a major breakthrough at the time.

Theorem 12.76 (Erdős, 1947). For every \(s \geq 3 \), \(2^{s/2} \leq R(s, s) \).

Proof. We will actually prove the following.

\[
\text{If } 2^{1 - \binom{s}{2}} \binom{n}{s} < 1, \text{ then } R(s, s) > n. \tag{3}
\]

To see that this is sufficient, we just need to check that \(n = 2^{s/2} \) satisfies the inequality on the left. Indeed, it is easy to see that \(\binom{n}{s} < \frac{n^s}{s!} < \frac{n^s}{2^{s/2}} \) for \(s \geq 3 \), so we obtain

\[
2^{1 - \binom{s}{2}} \binom{n}{s} < 2^{1 - s^2/2 + s/2} \cdot \frac{n^s}{2^{s/2}} = 2^{-s^2/2} n^s = (n/2^{s/2})^s = 1
\]

for \(n = 2^{s/2} \).

Now let us prove (3). Color the edges of \(K_n \) randomly red or blue with probability 1/2, independently of the other edges. For each set \(A \) of \(s \) vertices, let \(X_A \) be the indicator random variable that \(A \) forms a monochromatic clique. Then \(X = \sum_A X_A \) is the random variable that counts the number of monochromatic \(s \)-cliques in this randomly colored graph. Here

\[
\mathbb{E}[X] = \sum_A \mathbb{E}[X_A] = \binom{n}{s} 2^{1 - \binom{s}{2}}
\]

because

\[
\mathbb{E}[X_A] = \mathbb{P}[A \text{ is monochromatic}] = \mathbb{P}[A \text{ is blue}] + \mathbb{P}[A \text{ is red}] = 2 \cdot (1/2)^{\binom{s}{2}}.
\]

So if we assume \(2^{1 - \binom{s}{2}} \binom{n}{s} < 1 \), then the expected number of monochromatic \(s \)-cliques in the graph is smaller than 1. In particular, there is a coloring where the number of monochromatic \(s \)-cliques is less than 1, i.e., zero. This is what we wanted to prove. \(\square \)

Note that with an additional trick, we can improve the argument a little bit. Indeed, the following is true.

\[
\text{If } 2^{1 - \binom{s}{2}} \binom{n}{s} = o(n), \text{ then } R(s, s) > (1 - o(1))n. \tag{4}
\]

To prove this, we can use the same argument to see that the expected number of monochromatic \(s \)-cliques in the random coloring above is \(o(n) \). Now this is not a good Ramsey graph, but we can easily turn it into one: delete a vertex from each of these monochromatic \(s \)-cliques. This way we only delete \(o(n) \) vertices, so \((1 - o(1))n\) vertices remain in the graph. On the other hand, it contains no monochromatic \(s \)-cliques, as we have “destroyed” them all.

If one does the calculations carefully (as we did not), (3) implies a lower bound \(R(s, s) \geq \frac{1}{\sqrt{2e}} s^{2s/2}(1 + o(1)) \), whereas (4) implies \(R(s, s) \geq \frac{1}{e} s^{2s/2}(1 + o(1)) \), an improvement by a factor of \(\sqrt{2} \). However, this is still extremely far from the upper bound.

The definition of the Ramsey number \(R(s, t) \) is often stated in terms of graphs without edge colors: If one deletes all red edges from a 2-edge-colored complete graph, and only keeps the blue edges, then a red clique will correspond to an empty set, and a blue clique
corresponds to an actual clique in the graph. With this correspondence in mind, the Ramsey number $R(s, t)$ can be equivalently defined as the smallest integer N such that every graph on N vertices contains an empty set of size s or a clique of size t. (Or: every N-vertex graph G satisfies $\alpha(G) \geq s$ or $\omega(G) \geq t$.)

Our lower bound construction is then the Erdős-Rényi random graph $G(n, 1/2)$, where, more generally, $G(n, p)$ is defined as a random graph, where each pair of vertices is connected by an edge with probability p, independently of the others.

3 AN UPPER BOUND ON $R_k(3)$

We finish this lecture by giving an upper bound on the k-color Ramsey number $R_k(3)$, that we used in Schur’s theorem. The proof is quite similar to the Erdős-Szekeres upper bound.

Proposition 12.77. For every $k \geq 2$, $R_k(3) \leq \lceil e \cdot k! \rceil + 1$.

Proof. We apply induction on k. For $k = 2$, the right-hand side is 6, and indeed, $R_2(3) = R(3, 3) \leq 6$.

Now suppose $k > 2$, and take a k-edge-colored complete graph on $\lceil e \cdot k! \rceil + 1$ vertices.

Note that $\lceil e \cdot k! \rceil = \sum_{i=0}^{k} \frac{k!}{i!}$. Indeed, $e \cdot k! = \sum_{i=0}^{\infty} \frac{k!}{i!}$, and here $\sum_{i=0}^{k} \frac{k!}{i!}$ is an integer, and $\sum_{i=k+1}^{\infty} \frac{k!}{i!} < 1$. Using this, we can observe the following:

$$\lceil e \cdot k! \rceil = \sum_{i=0}^{k} \frac{k!}{i!} = 1 + \sum_{i=0}^{k-1} \frac{k!}{i!} = 1 + k \cdot \sum_{i=0}^{k-1} \frac{(k-1)!}{i!} = 1 + k\lceil e \cdot (k-1)! \rceil.$$

Now a vertex v in our graph has $\lceil e \cdot k! \rceil$ edges touching it, colored with k colors. The above equation then implies that at least $\lceil e \cdot (k-1)! \rceil + 1$ of these edges have the same color i. Let X be the set of neighbors of v in color i. If the graph contains an edge in color i between two vertices of X, then it forms a K_3 in color i with v. Otherwise, the edges between X are colored with $k - 1$ colors only, and since $|X| \geq \lceil e \cdot (k-1)! \rceil + 1$, we get a monochromatic K_3 by induction. \qed
Lecture 13
Graph algorithms.

In this last lecture we will go into some more detail on algorithms for graphs. We will focus on the minimum spanning tree problem and the shortest path problem. In Lectures 2 and 3 we saw that the BFS algorithm solves both problems for unweighted graphs, but now we consider weighted graphs (i.e. the graphs come with a weight function \(w : E(G) \to \mathbb{R} \)), which makes the problems and the algorithms more interesting.

For simplicity, in this lecture we assume the graphs to be undirected and connected. We will discuss the algorithms in a fairly informal way, without spending too much time on implementation details.

1 Minimum spanning trees

Minimum Spanning Tree Problem: Given a connected weighted undirected graph \(G \), find a spanning tree of minimum weight.

Greedy Tree-Growing Algorithm. The easiest thing to try is a greedy approach: repeatedly add the smallest edge that we can add while preserving connectedness and acyclicity (i.e. while maintaining a tree all along).

Tree-Growing Algorithm for connected weighted undirected graphs

1. Start with \(T \) being a single vertex;
2. Repeat the following until \(V(T) = V(G) \):
 a. Find \(e \in \partial(T) \) with minimum \(w(e) \);
 b. Add \(e \) to \(T \).
3. Return \(T \).

This algorithm is often called Prim’s algorithm.

Theorem 12.78. The Tree-Growing Algorithm returns a minimum spanning tree.

Proof. Call a tree good if it is contained in a minimum spanning tree. Clearly the empty graph is good. We will inductively show that all the trees occurring during the algorithm are good, hence so is the final tree \(T \). Since the final tree \(T \) has \(V(T) = V(G) \), it is itself a spanning tree, so it follows that it has minimum weight.

Suppose we are in the second step of the algorithm with a good tree \(T' \), contained in a minimum spanning tree \(T^* \). Then we want to show that \(T' + e \) is also good, where \(e \in \partial(T') \) with minimum \(w(e) \). If \(e \in T^* \), then this is obvious, so suppose \(e \not\in T^* \). Adding \(e \) to \(T^* \) creates a cycle, which must contain another edge \(f \in \partial(T^*) \). Since the algorithm chose \(e \) over \(f \), we have \(w(f) \geq w(e) \). Then \(T^{**} = T^* - f + e \) is a minimum spanning tree containing \(T' \) and \(e \), which means \(T' + e \) is good.

\(\square \)
Greedy Forest-Growing Algorithm. There are different greedy approaches for finding a minimum spanning tree, where a different property is preserved in the process. For instance, one can just preserve acyclicity (i.e. maintain a forest), and in the end the connectedness will follow just from the number of edges. This leads to:

Forest-Growing Algorithm for connected weighted undirected graphs

1. Start with the empty graph F on the vertex set $V(G)$, and set $S = E(G)$;
2. Repeat the following until $S = \emptyset$:
 (a) Find $e \in S$ with minimum $w(e)$;
 (b) Add e to F, unless that creates a cycle; remove e from S.
3. Return F.

This is usually called *Kruskal’s algorithm*. The proof that it indeed returns a minimum spanning tree is left to the exercises.

2 **Shortest paths**

Shortest Path Problem: Given a connected weighted undirected graph G and $a, b \in V(G)$, find a path from a to b of minimum weight, if one exists.

Unweighted graphs. Note first that the greedy approach does badly for the Shortest Path Problem: building a path by greedily adding shortest the available edge will probably not even give a path from a to b, let alone a shortest path. Fortunately, in an earlier lecture we saw that a BFS-tree gives shortest paths from its root. We will start from that idea, but phrase it in terms of distance sets: D_k will be the set of vertices at distance k from a.

BFS for distance sets from a for connected unweighted graphs

1. Set $D_0 = \{a\}$ and $k = 0$.
2. Repeat the following until $\cup_{i=0}^k D_k = V(G)$:
 (a) Set $k := k + 1$.
 (b) Compute $D_k = N(D_{k-1}) \setminus (\cup_{i=0}^{k-1} D_k)$;
3. Return the sets D_i for $i = 0, 1, \ldots, k$.

Distance from a to b: We have $\text{dist}(a, b) = i$ iff $b \in D_i$. More generally, if we define $d : V(G) \to \mathbb{Z}_{\geq 0}$ by $d(v) = i$ iff $v \in D_i$, then $d(v) = \text{dist}(a, v)$ for any $v \in V(G)$.

Of course, if you only cared about b, you could let the algorithm stop as soon as $b \in D_k$. **Shortest ab-path**: We can find the shortest path from a to b by going backwards from b. If $b \in D_m$, set $v_m = b$, and repeatedly choose

$$v_i \in N^{\text{in}}(v_{i+1}) \cap D_i,$$

from $i = m - 1$ to $i = 0$. Then $v_0 = a$ and $P = av_1v_2 \cdots v_{m-1}b$ is a shortest ab-path.
Dijkstra’s algorithm. Can we do the same with arbitrary weights? Think of an unweighted graph as having weight 1 at every edge. Then we could handle any graph with nonnegative integral weights by splitting an edge with weight k into k edges of weight 1. That gives an unweighted graph with corresponding shortest paths, so we could use the BFS algorithm above to find the shortest paths. This will give a shortest path, but it is a bad algorithm, because it works with a graph whose number of vertices depends on the weights in the original graph. That implies that the running time is not $O(f(n))$ for any function $f(n)$ of $n = |V(G)|$, so it certainly isn’t polynomial.

Nevertheless, this idea does lead to a good algorithm. When we apply BFS to the modified graph with weight 1 edges, we encounter the original vertices in the order of their distance from the starting vertex. If we keep track of that order as we go along, we can skip all the intermediate steps. This is what Dijkstra’s algorithm does.

Dijkstra’s Algorithm for shortest paths from a for nonnegative weights

1. Set $d(a) = 0$ and $d(v) = \infty$ for $v \neq a$, and $S = \emptyset$
2. Repeat the following until $S = V(G)$:
 (a) Take $u \not\in S$ with minimum $d(u)$;
 (b) Recompute $d(v)$ for all $v \in N(u) \setminus S$:
 if $d(v) > d(u) + w(uv)$, set $d(v) := d(u) + w(uv)$ and $p(v) = u$;
 (c) Add u to S.

Shortest ab-path: The predecessor function p defines a path from a to any vertex $b \in V(G)$: Set $m = d(b)$, $v_m = b$, and iteratively set $v_k = p(v_{k+1})$, until $v_0 = a$. Then $P = av_1v_2\cdots v_{m-1}b$ is a shortest path from a to b.

Theorem 12.79. For a connected weighted graph with nonnegative weights, and a vertex a, Dijkstra’s Algorithm correctly returns the distances from a and the shortest paths from a.

Proof. We claim that for every $v \in S$ we have $d(v) = \text{dist}(a,v)$. This claim would imply the theorem. To prove it, consider the moment when the algorithm chooses $u \not\in S$ with minimum $d(u)$. By the way we have computed $d(u)$ (and by p), there is a path from a to u of weight $d(u)$, so we have $\text{dist}(a,v) \leq d(u)$.

Suppose that $\text{dist}(a,v) < d(u)$, so there is a shorter path P' from a to u. Let u' be the first vertex on P' that is outside S (which could be u itself), and let $v' \in S$ be the vertex on P' before u'. Since $v' \in S$, we have $d(v') = \text{dist}(a,v')$ by induction. Since the weight of P' is less than $d(u)$, we have $d(v') + w(v'u') < d(u)$ (knowing that there are no negative weights). But then, after the previous step where we updated the neighbors of v', we must have had $d(v') \leq d(v') + w(v'u') < d(u)$. If $u = u'$, this is a contradiction, while if $u \neq u'$, then we should have chosen u' before u, also a contradiction. \qed
Negative weights. BFS and Dijkstra may not work when the graph has negative weights. For instance, for

![Graph Image]

the algorithm will end with $d(b) = 2$, when it should be 1. It will choose b before c, set $d(b) = 2$ and put b into S, after which it no longer updates $d(b)$.

We could try to fix this by setting $d(c) = 3$ and then updating $d(b) = d(c) - 2 = 1$, but then we should also update $d(c) = d(b) - 2 = -1$, and then we have a problem. This last step would not correspond to a path but to a walk, which we should not be considering, but this kind of update cannot make that distinction.

In general, this problem is actually NP-hard, for instance because we could show that an algorithm for shortest paths that allows negative weights could also solve the Hamilton path problem, which is NP-hard.