1. Prove that every tree with a vertex of degree k has at least k leaves.

2. Prove that every acyclic graph with n vertices and $n - 1$ edges is a tree.

3. Recall that a path from a vertex u to a vertex v in a graph is a sequence (x_0, x_1, \ldots, x_k) of vertices such that $x_0 = u$, $x_k = v$, and x_ix_{i+1} is an edge for $0 \leq i \leq k - 1$. Prove that a graph is a tree if and only if for any two vertices u and v there exists exactly one path from u to v.

4. Consider an n-vertex complete graph with a selected edge e. Prove that the graph contains $2n^{n-3}$ spanning trees containing the edge e.

 Hint: The number of spanning trees containing the edge e does not depend on the choice of e. Consider the sum of the numbers of spanning trees containing e over all edges e.

5. Consider a directed graph G whose vertices are sequences $(x_1, x_2, \ldots, x_{k-1})$ of zeros and ones of length $k - 1$ and whose edges are defined so that for any $x_1, x_2, \ldots, x_k \in \{0, 1\}$ there is a directed edge from (x_1, x_2, \ldots, x_k) to $(x_2, \ldots, x_{k-1}, x_k)$. Prove that the graph G is Eulerian. Using an Euler tour in this graph, construct a sequence (x_1, x_2, \ldots, x_n) of zeros and ones of length $n = 2^k + k - 1$ with no two identical blocks of size k, that is, with no two identical subsequences of the form $(x_{i+1}, x_{i+1}, \ldots, x_{i+k-1})$ for $1 \leq i \leq n - 1$.

 Note: A sequence of zeros and ones with no two identical blocks of size k cannot be longer than $2^k + k - 1$.

6. * Let T be a tree with n vertices. A **subtree** of T is a subgraph of T which is itself a tree. Prove that T contains a vertex v with the following property: every subtree of T that does not contain v has at most $n/2$ vertices.