1. Let \mathcal{F} be a family of k-element subsets of a set X. Prove that the elements of X can be colored with k colors so that at least $|\mathcal{F}| \cdot k!/k^k$ sets in \mathcal{F} have exactly one element of each color.

2. Consider $2n$ sets A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n, each being a k-element subset of some fixed set X. Prove that if $n < 2^{k-1}$, then there are elements a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n such that $a_i \in A_i$ and $b_i \in B_i$ for $i \in \{1, 2, \ldots, n\}$, and $a_i \neq b_j$ for $i, j \in \{1, 2, \ldots, n\}$.

Hint: Consider a random partition of X into two subsets A and B, and estimate the probability that one cannot choose elements $a_1, a_2, \ldots, a_n \in A$ and $b_1, b_2, \ldots, b_n \in B$ with the required properties.

3. For a family \mathcal{F} of subsets of a set X, let $\tau(\mathcal{F})$ denote the minimum size of a subset of X whose intersection with every set in \mathcal{F} is non-empty. Let \mathcal{F} be a family of k-element subsets of a set X. Prove that if $\tau(\mathcal{F}) = \ell + 1$ and $\tau(\mathcal{F} \setminus \{Y\}) = \ell$ for every $Y \in \mathcal{F}$, then $|\mathcal{F}| \leq \binom{k+\ell}{k}$.

Hint: Use Bollobás’s theorem.

4. Let \mathcal{F} be a family of subsets of $\{1, 2, \ldots, n\}$ with

$$|\mathcal{F}| > \sum_{i=0}^{k-1} \binom{n}{i}.$$

Prove that there is a set $S \subset \{1, 2, \ldots, n\}$ of size k such that every subset X of S can be written as $X = Y \cap S$ for some set $Y \in \mathcal{F}$.

Hint: Apply induction on n. For the induction step, consider families

$$\mathcal{F}_1 = \{Y \subset \{1, 2, \ldots, n-1\}: Y \in \mathcal{F} \text{ or } Y \cup \{n\} \in \mathcal{F}\},$$

$$\mathcal{F}_2 = \{Y \subset \{1, 2, \ldots, n-1\}: Y \in \mathcal{F} \text{ and } Y \cup \{n\} \in \mathcal{F}\}.$$

Prove that \mathcal{F}_1 satisfies the condition of the problem for $n-1$ and k, or \mathcal{F}_2 satisfies the condition for $n-1$ and $k-1$.

5. * Let \mathcal{F} be a family of subsets of size at least 2 of a set X such that every element of X belongs to exactly two sets in \mathcal{F}. Prove that exactly one of the following two conditions holds:

- there are elements $x_1, x_2, \ldots, x_n \in X$ such that $\{x_i, x_{i+1}\} \in \mathcal{F}$ for $1 \leq i \leq n-1$, $\{x_n, x_1\} \in \mathcal{F}$, and n is odd,
- the elements of X can be colored with two colors so that no set in \mathcal{F} is monochromatic.