SETS OF LATTICE POINTS THAT FORM NO SQUARES

by

M. AJTAI and E. SZEMERÉDI

Consider the lattice points in a square of size $n \times n$, i.e. consider e.g. the points (i, j) in the Cartensian plane where $0 \le i, j \le n$. P. ERDős and R. GRAHAM [1] conjectured that given any positive constant c, any set of cn² elements from among the above lattice points contains four points that form a square the sides of which are parallel to the coordinate axes provided n is large enough, depending on c. We are unable to settle this problem here. Instead we consider the easier case of isoceles right-angled triangles whose sides are parallel to the axes; the consideration of this case was also suggested by Erdős and GRAHAM. First we prove the following

THEOREM 1. There is a positive absolute constant c such that, given any positive integer n, there are $c(r_3(n))^2$ lattice points in a square of size $n \times n$ no three of which form an isoceles right-angled triangle whose sizes are parallel to the axes.

Here $r_3(n)$ denotes the largest integer m such that there are m integers less than n no three of which form an arithmetic progression. According to a result of F. BEHREND, we have $r_3(n) > n^{1-c/\sqrt{\log n}}$.

PROOF. Let $a_1, ..., a_k$ ($k = r_3([n/2])$, where [\cdot] stands for the integral part of the bracketed number) be a sequence of integers less than n containing no arithmetic progression of three elements, and consider the set S of those lattice points in the square $0 \le x$, $y \le n$ that are in the intersection of lines of form y=x+2a; and y = -x + 2a; $(1 \le i, j \le k)$. As any two such line intersects each other in a lattice point, it is easy to see that S has at least $k^2/4$ elements. As $r_3([n/2])$ and $r_3(n)$ have the same orders of magnitude, it is clear that the cardinality of S is at least $c(r_3(n))^2$, where c is an easily computable absolute constant. We show that there are no three points belonging to S that form a right-angled isoceles triangle with sides parallel to the axes. Assume, on the contrary, that ABC is such a triangle, say $\overline{AC} = \overline{BC}$. We may assume, without loss of generality, that each of the points A, B, and Clies on different lines of form y = x + 2a; (the other possibility, when each of A, B, and C lies on different lines of form y = -x + 2a can be dealt with similarly); say A lies on the line $y=x+2a_r$, C on $y=x+2a_s$, and B on $y=x+2a_t$. Then a_r , a_s , and a_t form an arithmetic progression, which is a contradiction. The proof complete.

In the other direction, we prove the following:

THEOREM 2. Let c > 0, and let S be a set of cn^2 of lattice points in a square of size $n \times n$. Then there are three points in S that form an isoceles right-angled triangle whose sides are parallel to the axes, provided n is large enough.

PROOF. Assume that the assertion of the theorem fails, and let c_{ij} be the largest constant such that there are $c_n n^2$ points that violate the assertion of the theorem, and put $c = \overline{\lim} c_n$. Then c > 0 holds according to our assumption. Let n be a large

Studia Scientiarum Mathematicarum Hungarica 9 (1974)

M. AJTAI AND E. SZEMERÉDI

integer, and let S be a set of $(c-\varepsilon)n^2$, points in a square of size $n \times n$ such that S does not contain an isoceles triangle whose sides are parallel to the axes. We are going to obtain a contradiction by showing that there is a square of size $k \times k$ that contains $(c+\varepsilon)k^2$ elements of S (i.e. there are a_1, a_2 , and d such that there are $(c+\varepsilon)k^2$ elements of S of form (a_1+id, a_2+jd) with $0 \le i, j < k$).

First we show that, almost every line x=i $(0 \le i < n)$ contains at most $(c+\sqrt{i})n$ elements of S, i.e. the number of exceptional *i*'s is o(n). Let us consider the lines x=i for $t\sqrt{n} \le i < (t+1)\sqrt{n}$, where $0 \le t < \sqrt{n}$. It is enough to show that the number of exceptional *i*'s satisfying this condition is $o(\sqrt{n})$. In fact, assume, on the contrary, that there is a positive constant η independent of n that there are $\eta\sqrt{n}$ exceptional *i*'s with $t\sqrt{n} \le i < (t+1)\sqrt{n}$ for some $0 \le t < \sqrt{n}$. The set H of exceptional *i*'s satisfying this condition can contain an arithmetic progression a+jd $(0 \le j < k)$ of length k, where k can be arbitrarily large, depending on n; note that we use the following theorem here: an infinite sequence of integers of positive upper density contains an arbitrarily long arithmetic progression (see [2]). Now split the set of positive integers $\le n$ as $T_0 \bigcup \bigcup_{o<1 < n/k} T_i$, T_i is an arithmetic progression of length k with difference d and T contains at most n + n elements (note that $d < \sqrt{n}$). Then there is an l so

d and T_0 contains at most $\eta \cdot n$ elements (note that $d < \sqrt{n}$). Then there is an l so that $A_l = T_l \times \{a+jd: 0 \le j < k\}$ contains at least $(c+2\varepsilon)k^2$ elements of S, since each a+jd was exceptional. If k is large enough, then in view of the definition of c, the set $A_l \cap S$ contains an isoceles triangle with sides parallel to the axes, which contradicts the definition of S.

So we have shown that, loosely speaking only very few lines x=i $(0 \le i < n)$ can contain "more then the average" number of elements of S; therefore, only a few lines contain "less than the average" number of elements of S; more precisely, an easy computation gives that there are less than $2\sqrt{\epsilon n}$ lines that contain more than $(c+\epsilon^{1/4})n$, elements of S.

Now consider the lines y=x+h, where $-n \le h \le n$. If ε is small enough, say $\varepsilon < c/100$ then there is such a line with $h=h_0$ containing cn/4 elements of S. Omit those points which lie on a vertical line containing less than $(c-\varepsilon^{1/4})n$ elements of S; there still remain say cn/6 points. Let these elements of S have abcissas a_i $(0 \le i < cn/6)$. According to a theorem cited just before, there is an arithmetic progression a+jd of length k each elements of which is some a_i ; and we may also assume that $d < \sqrt{n}$. Now decompose the set of integers $\le n$ as $T_0 \cup \bigcup_{0 < l < n/k} T_l$ as above (with the new parameters d and k).

The rectangle $[0, n] \times \{a+jd: 0 \le j < k\}$ contains at least $(c-\sqrt{\varepsilon})nk$ points of S as each line x = a+jd contains at least $(c-\sqrt{\varepsilon})n$; no square $T_l \times \{a+jd: 0 \le j < k\}$ may contain more than $(c+\varepsilon)k^2$ points if k is large enough in view of the definition

of c. So almost every T_l (i.e. except at most $\varepsilon^{1/4} \frac{n}{k}$) contains at least $(c - \varepsilon^{1/4})k^2$

elements of S. We may assume that all of them do, as those T_i 's which do not, may be added to T_0 , which will thus have cardinality $\leq 2\varepsilon^{1/4}n$. There is an l such that T_i contains at least ck/8 elements of a_i+h_0 . Note that no line $y=a_i+h_0$ can contain an element with abscissa a_j for any j (so, in particular, with abscissa belonging to the arithmetic progression a+jd) as then $(a_i, a_i+h), (a_i, a_j), (a_j, a_j+h)$ would be an isoceles triangle. This means that at least ck/8 lines of the square

$T_1 \times \{a + jd: 0 \leq j < k\}$

Studia Scientiarum Mathematicarum Hungarica 9 (1974)

10

a square of size $n \times n$ such that S is are parallel to the axes. We are there is a square of size $k \times k$ that , and d such that there are $(c+\varepsilon)k^2 < k$.

 $\leq i < n$) contains at most $(c + \sqrt{e})n$ is o(n). Let us consider the lines enough to show that the number . In fact, assume, on the contrary, *n* that there are $\eta \sqrt{n}$ exceptional set *H* of exceptional *i*'s satisfying ssion a+jd $(0 \leq j < k)$ of length *k*, *n*; note that we use the following f positive upper density contains . Now split the set of positive inteogression of length *k* with difference

hat $d < \sqrt{n}$). Then there is an l so $(c+2\varepsilon)k^2$ elements of S, since h, then in view of the definition th sides parallel to the axes, which

nly very few lines x=i $(0 \le i < n)$ of elements of S; therefore, only r of elements of S; more precisely, an $2\sqrt{i}n$ lines that contain more

 $n \le h \le n$. If ε is small enough, intaining cn/4 elements of S. Omit ing less than $(c - \varepsilon^{1/4})n$ elements be elements of S have abcissas a_i effore, there is an arithmetic progsome a_i ; and we may also assume a as $T_0 \cup \bigcup_{0 < l < n/k} T_l$ as above (with

tains at least $(c - \sqrt{\epsilon})nk$ points *n*; no square $T_l \times \{a+jd: 0 \le j < k\}$ e enough in view of the definition $\frac{r_4}{k} \frac{n}{k}$ contains at least $(c - \epsilon^{1/4})k^2$

b, as those T_i 's which do not, may $\leq 2\varepsilon^{1/4}n$. There is an l such that Note that no line $y=a_i+h_0$ can particular, with abscissa belonging a_i+h), (a_i, a_j) , (a_j, a_j+h) would 8 lines of the square

 $\{k\}$

contains no element of S which is a contradiction, provided k is large enough as we saw that almost every line of a square must contain many elements of S. (We proved this for the original square n, provided S is large enough; but these conditions hold for the above smaller square too, as it contains at least $(c-\varepsilon^{1/4})k^2$ elements of S.) The proof is complete.

REFERENCES

[1] ERDÖS. P.: Problems and results on Combinatorial Number Theory, A Survey of Combinatorial theory, North Holland Publishing Company 1973, (117–137)

[2] SZEMERÉDI, E.: On sets of integers containing no k elements of arithmetic progression. Acta Arithmetica (to appear).

Mathematical Institute of the Hungarian Academy of Sciences, Budapest

(Received July 22, 1974.)

Studia Scientiarum Mathematicarum Hungarica 9 (1974)