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SETS OF LATTICE POINTS THAT FORM NO SQUARES

by
M. AJTAI and E. SZEMEREDI

Consider the lattice points in a square of size nXn, i.e. consider e.g. the points
(i, /) in the Cartensian plane where 0=, j=n. P. ERDGs and R. GranaMm [I] con-
jectured that given any positive constant ¢, any set of ¢n? elements from among
the above lattice points contains four points that form a square the sides of which
are parallel to the coordinate axes provided » is large enough, depending on c.
We are unable to settle this problem here. Instead we consider the easier case of
isoceles right-angled triangles whose sides are parallel to the axes: the consideration
of this case was also suggested by ERDGs and GRAHAM. First we prove the following

THEOREM 1. There is a positive absolute constant ¢ such that, given any positive
integer n, there are c(r3(n))2 lattice points in a square of size nXn no three of which
Jorm an isoceles right-angled triangle whose sizes are parallel to the axes.

Here ry(n) denotes the largest integer m such that there are m integers less
than n no three of which form an arithmetic progression. According to a result of

F. BEHREND, we have ry(n)=nt—c/Vlogn,

ProOOF. Let ay, ..., @, (k=ry([n/2]), where [-] stands for the integral part of
the bracketed number) be a sequence of integers less than » containing no arithmetic
progression of three elements, and consider the set S of those lattice points in the
square O=x, y=n that are in the intersection of lines of form y=x+2a; and
y =—x+2a; (1=i, j=k). As any two such line intersects each other in a lattice
point, it is easy to see that S has at least k%/4 elements. As r,([n/2]) and ry(n) have
the same orders of magnitude, it is clear that the cardinality of S is at least c(rg(m),
where c is an easily computable absolute constant. We show that there are no three
points belonging to S that form a right-angled isoceles triangle with sides parallel

to the axes. Assume, on the contrary, that ABC is such a triangle, say AC=BC.

We may assume, without loss of generality, that each of the points 4, B, and C

lies on different lines of form y=x+2a; (the other possibility, when each of A, B, and

C lies on different lines of form y=—x+2a can be dealt with similarly); say A

lies on the line y=x+2a,, C on y=x+2q,, and B on y=x+2a,. Then a,, a,,

and g, form an arithmetic progression, which is a contradiction. The proof complete.
In the other direction, we prove the following:

THEOREM 2. Let ¢=>0, and let S be a set of cn® of lattice points in a square of
size n X n. Then there are three points in S that form an isoceles right-angled triangle
whose sides are parallel to the axes, provided n is large enough.

PrOOF. Assume that the assertion of the theorem fails, and let ¢, be the largest
constant such that there are ¢,n® points that violate the assertion of the theorem,
and put ¢= fjj ¢,. Then ¢=0 holds according to our assumption. Let n be a large

n-»oco
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integer, and let S be a set of (¢—¢)n®, points in a square of size n>xn such that §
does not contain an isoceles triangle whose sides are parallel to the axes. We are
going to obtain a contradiction by showing that there is a square of size kXA that
contains (c+4 £)k* elements of S (i.e. there are gy, a,, and d such that there are (¢ +&)k*
elements of S of form (a, +id, a, +jd) with 0=i, j<Kk).

First we show that, almost every line x=1i (0=/=n) contains at most (c+ye)n
elements of S, i.e. the number of exceptional i’s is o(n). Let us consider the lines
x=i for tyn=i=(r+1)yn, where 0=r<yn. 1t is enough to show that the number
of exceptional i's satisfying this condition is o(yn). In fact, assume, on the contrary,
that there is a positive constant n independent of » that there are ny»n exceptional
i’s with tyn=i<(t+1)yn for some 0=r<yn. The set H of exceptional i’s satisfying
this condition can contain an arithmetic progression a+jd (0=j<k) of length k,
where & can be arbitrarily large, depending on n; note that we use the following
theorem here: an infinite sequence of integers of positive upper deusity contains
an arbitrarily long arithmetic progression (see [2]). Now split the set of positive inte-
gers =n as T, U T, T,is an arithmetic progression of length & with difference

0<l-<=nlk
d and T, contains at most n-n elements (note that ¢<yn). Then there is an / so
that A,=T,x{a+jd: 0=j<k} contains at least (c+2e)k* elements of S, since
each a+jd was exceptional. If k is large enough, then in view of the definition
of ¢, the set A4, S contains an isoceles triangle with sides parallel to the axes, which
contradicts the definition of S.

So we have shown that, loosely speaking only very few lines x=/ (0=/=n)
can contain “more then the average” number of elements of S; therefore, only
a few lines contain “less than the average™” number of elements of S: more precisely,
an easy computation gives that there are less than 2yen lines that contain more
than (c+&Y*)n, elements of S.

Now consider the lines y=x-+/, where —n=h=n. If ¢ is small enough,
say £ = ¢/100 then there is such a line with 1=/, containing cn/4 elements of S. Omit
those points which lie on a vertical line containing less than (c—e"n elements
of S: there still remain say cn/6 points. Let these elements of § have abcissas a,
(0=i<cn/6). According to a theorem cited just before, there is an arithmetic prog-
ression a+jd of length k each elements of which is some a;; and we may also assume
that d<yn. Now decompose the set of integers =n as 7,lJ |J T} as above (with
the new parameters o and k). D=

The rectangle [0, )X {a+jd: 0=j-<k} contains at least (c—ye)nk points
of S as each line x =a+jd contains at least (c— y&)n; no square ;X {a+jd: 0=j=< k}
may contain more than (¢+eg)&? points if k is large enough in view of the definition

. n )
of ¢. So almost every T, (l.e. except at most g/ 7) contains at least (c—g!/!)A*

elements of S. We may assume that all of them do, as those 7;’s which do not, may
be added to T,, which will thus have cardinality =2¢Y%. There is an / such that
T, contains at least ck/8 elements of a@;+/,. Note that no line y=a;+/h, can
contain an element with abscissa a; for any j (so, in particular, with abscissa belonging
to the arithmetic progression a+jd) as then (a;, a;+h), (a;, a), (a;, a;+h) would
be an isoceles triangle. This means that at least ck/8 lines of the square

T, x{a+jd: 0=j<k}
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ontains no element of § which is a contradiction, provided & is large enough
Lnli\l saw that almost every line of a square must contain many elements of S. (We
;:0\*<:ai this for the original square n, providcq Sis la rge enough: but tI}ﬁsc E‘unditi(ms
hold for the ulw‘v_e smaller square too, as it contains at least (¢—&"") k" elements
of S.) The prool is complete.
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