1. Prove the following inequality for \(n \geq 1 \):

\[
 n! \geq e \cdot \frac{n^n}{e^n}.
\]

(Hint: \(\int \ln x \, dx = x \ln x - x + c \).)

2. A family \(\mathcal{F} \) of nonempty subsets of a finite set \(X \) is \textit{two-colorable} if there exists a coloring of the elements of \(X \) using two colors with no set in \(\mathcal{F} \) monochromatic. For an integer \(n \geq 1 \), let \(m(n) \) denote the minimum size of a non-two-colorable family of \(n \)-element subsets of a finite set. Prove that \(m(n) \geq 2^{n-1} \).

In other words, prove that any family of fewer than \(2^{n-1} \) \(n \)-element subsets of a finite set is two-colorable.

3. A \textit{tournament} is a directed graph such that any two vertices are connected by exactly one directed edge. Prove that if \(\binom{n}{k}(1 - 2^{-k})^{n-k} < 1 \), then there exists a tournament on \(n \) vertices with the following property: for any set \(X \) of \(k \) vertices there is a vertex \(v \notin X \) such that all the \(k \) edges connecting it with \(X \) are directed towards \(v \).

In other words, for any set of \(k \) players there is another player that beats all of them.

4. A \textit{matching} in a graph is a set of edges no two of which share an endpoint. Let \(G \) be a graph with \(m \) edges and a matching of size \(\mu \). Prove that \(G \) has a bipartite subgraph with at least \((m + \mu)/2 \) edges.

5. Let \(G \) be a graph with \(n \) vertices and \(nd/2 \) edges, where \(d \geq 1 \). Prove that \(\alpha(G) \geq n/(2d) \).

(Hint: Take a random subset of the vertices so that the difference between the expected number of vertices and the expected number of edges inside this subset is \(n/(2d) \).)

6. * Let \(m(n) \) be defined as in Problem 2. Prove that if there exists an even \(v \) with

\[
 2^v \left(1 - \frac{2^{v/2}}{\binom{n}{v}} \right)^m < 1,
\]

then \(m(n) \leq m \).

Careful calculation of the above bound yields \(m(n) < (1 + o(1)) \epsilon \ln 2 \cdot n^2 2^{n-2} \).