6. * Let \(m(n) \) be defined as in Problem 2. Prove that if there exists \(v \) with
\[
2^v \left(1 - \frac{2^{(v/2)}}{\binom{n}{v}} \right)^m < 1,
\]
then \(m(n) \leq m \).

Let \(X \) be a set of size \(v \). Let \(\mathcal{F} = \{S_1, \ldots, S_m\} \), where \(S_1, \ldots, S_m \) are \(n \)-element subsets of \(X \) chosen independently uniformly at random (note that we do not assume \(S_1, \ldots, S_m \) to be distinct). We show that with positive probability the family \(\mathcal{F} \) is not two-colorable.

Let \(\mathcal{C} \) denote the family of all colorings of \(X \) with two colors, say, red and blue. For a coloring \(c \in \mathcal{C} \) and \(i \in \{1, \ldots, m\} \), let \(A_i^c \) denote the event that the set \(S_i \) is monochromatic under the coloring \(c \). If \(r \) and \(b \) denote the numbers of elements colored red and blue, respectively (so that \(r + b = v \)), then we have
\[
P(A_i^c) = \frac{\binom{r}{n} + \binom{b}{n}}{\binom{n}{v}},
\]
as there are \(\binom{r}{n} \) choices of a red subset, \(\binom{b}{n} \) choices of a blue subset, and \(\binom{v}{n} \) choices in total. The sum \(\binom{r}{n} + \binom{b}{n} \) is minimized when \(r = b = \frac{v}{2} \), that is, we have \(\binom{r}{n} + \binom{b}{n} \geq 2^{(v/2)} \). Indeed, for any \(p, q, x, y \) such that \(p \geq q \) and \(x \geq y \) or \(p \leq q \) and \(x \leq y \) we have
\[
px + qy \geq px + qy - \frac{1}{2}(p - q)(x - y) = \frac{1}{2}(p + q)(x + y),
\]
which applied \(n \) times yields
\[
\begin{align*}
&\frac{r}{2}(r - 1) \ldots (r - n + 1) + b(b - 1) \ldots (b - n + 1) \\
&\geq \frac{r+b}{2}(r - 1) \ldots (r - n + 1) + \frac{r+b}{2}(b - 1) \ldots (b - n + 1) \\
&\geq \ldots \\
&\geq \frac{r+b}{2}(\frac{r+b}{2} - 1) \ldots (\frac{r+b}{2} - n + 1) + \frac{r+b}{2}(\frac{r+b}{2} - 1) \ldots (\frac{r+b}{2} - n + 1) \\
&= 2 \cdot \frac{1}{n} \left(\frac{v}{2} - 1 \right) \ldots \left(\frac{v}{2} - n + 1 \right), \\
&\binom{v}{n} + \binom{v}{n} \geq 2 \cdot \frac{1}{n} \left(\frac{v}{2} - 1 \right) \ldots \left(\frac{v}{2} - n + 1 \right) = 2^{(v/2)}. \\
\end{align*}
\]
Consequently, we have
\[
P(A_i^c) \geq \frac{2^{(v/2)}}{\binom{n}{v}},
\]
\[
P(\overline{A_i^c}) = 1 - P(A_i^c) \leq 1 - \frac{2^{(v/2)}}{\binom{n}{v}}.
\]
Let \(B_c \) denote the event that none of the sets \(S_1, \ldots, S_m \) is monochromatic under \(c \). Since the subsets are chosen independently, we have
\[
P(B_c) = \prod_{i=1}^m P(\overline{A_i^c}) \leq \left(1 - \frac{2^{(v/2)}}{\binom{n}{v}} \right)^m.
\]
Since $|\mathcal{C}| = 2^v$ and by the union bound, we have

$$P\left(\bigcup_{c \in \mathcal{C}} B^c\right) \leq \sum_{c \in \mathcal{C}} P(B^c) \leq 2^v \left(1 - \frac{2^{(v/2)}}{n} \right)^m < 1.$$

Therefore, there is a way to select S_1, \ldots, S_m so that none of the events B_c happens, that is, for each coloring $c \in \mathcal{C}$, at least one of the sets S_1, \ldots, S_m is monochromatic under c, that is, the family \mathcal{F} is not two-colorable. Consequently, we have $m(n) \leq |\mathcal{F}| \leq m$.