
Advanced Discrete Mathematics 2013 – PS1 – Bonus Solutions

7. * Given |X| = n and distinct nonempty subsets A1, . . . , An ⊂ X. Show that there is
an x ∈ X such that the sets Ai\{x} are still distinct.

I will give 3 proofs, 2 with linear algebra and 1 with graph theory.

Proof 1: We want to show that given an n×n matrix A with distinct columns, there
is a row such that if we delete it, the resulting (n − 1) × n matrix still has distinct
columns.
First suppose det(A) 6= 0. Then consider expanding the determinant on a column j, ie

det(A) =
n∑

i=1

(−1)(i−1)(j−1)aij det(Aij),

where aij is the entry of A on the ith row and jth column, and Aij is the submatrix
that we get after deleting the ith row and jth column. Because det(A) 6= 0, there must
be an i such that aij = 1 and det(Aij) 6= 0. Then Aij must have distinct columns.
Consider deleting row i. The only way this could lead to non-distinct columns is if
column j, after removing the ith entry, is equal to a column of Aij, say column k.
Then aik = 0, since otherwise column j and k would be equal in A.
This is not a contradiction, but suppose we pick the column j so that it has the least
number of 1s. Then aik = 0 would mean that k is a column with fewer 1s, so we would
get a contradiction. Therefore we can delete row i.
On the other hand, suppose that det(A) = 0. Then there is a row i that is a linear
combination of the other rows. We claim that we can remove this row. Suppose that
deleting i leaves two columns j and k equal. Then aij 6= aik, because otherwise column
j and k would be equal in A. But this contradicts row i being a linear combination of
other rows, because taking a linear combination of indentical entries (from column j
and k) should give identical results for aij and = aik. This finishes the proof.

Proof 2: (Antoine Imboden had this solution.) Suppose on the contrary that for
each xi there are two sets Aji and Aki such that Aji\{xi} = Aki\{xi}. Then the
corresponding characteristics vectors satisfy

aji − aki = ei or − ei,

where ei is the vector with ith entry 1 and the other entries 0. So we have for i =
1, . . . , n that

ei ∈ span{aj − ak : 1 ≤ j, k ≤ n} = span{aj − aj+1 : 1 ≤ j ≤ n− 1} =: V.

But this is a contradiction because clearly dim(V ) = n− 1, while the ei are n linearly
independent vectors.

Proof 3: (Several students did something like this.) Suppose on the contrary that
for each x there are two sets Ajx and Akx such that Ajx\{x} = Akx\{x}. We define a
graph with vertices the Aj, and we connect Ajx and Akx for each x. Then we have n
vertices and n edges, so by a basic result from graph theory, there must be a cycle in
this graph (an acyclic graph on n vertices is called a forest and can have at most n− 1



edges; if it also connected, it is called a tree and must have exactly n− 1 edges).
But this is a contradiction because this graph cannot have a cycle. Indeed, looking at
the edge corresponding to x, we must have x ∈ Ajx and x 6∈ Akx or vice versa. For
every other edge, say between Ajy and Aky , x is either in both sets or in neither. Such
edges can never connect Ajx to Akx .

Remark: Note that you have be a bit careful with this graph approach. If you define the graph to

have vertices Ai and you put an edge whenever there is an x such that Ajx\{x} = Akx
\{x}, then the

graph will have cycles.

You could try to fix this by taking a directed graph, directing each edge from the smaller set to the

larger one. Then it is true that this graph has no directed cycle, but this does not imply that the

number of edge is ≤ n− 1.

You can still fix this approach by observing that in every cycle there must be an even number of edges

corresponding to each x. So you can break each cycle by removing an edge, while still leaving the

graph with an edge corresponding to each x. This gives an acyclic graph with ≥ n edges, and your

contradiction. Proof 3 circumvents this by right away taking a graph with only one edge per x.

8. * The examples that you found in problem 3 are not uniform. Show that there exists
a tight example for the bound |S| ≤ |X| for uniform 1-intersecting set systems in the
case |X| = 7.
Show that in general this is only possible if |X| = q2 + q + 1 for some integer q > 0.
Here is such a system (writing {a, b, c} = abc):

{123, 156, 147, 246, 257, 345, 367}.

It is the only one up to permutations. This is a famous example that shows up all over
discrete math, called the Fano plane (google it to see a picture or learn more).
It is an open research problem to determine for which q such an example really exists.

I’ll give two proofs of the second (main) part. The first is by your fellow student Samuel
Regamey, and unlike my own solution uses the incidence matrix (appropriately for this
course).
First a little notation: We write k for the size of the |Si|, and

rx = #{Si : x ∈ Si}

for the representation number of x.
We’ll ignore trivial cases likes |X| = 1 or k = 1 below.

Proof 1: Let A be the incidence matrix, of size |X| × |S|, and consider the adjacency
matrix ATA = J + (k − 1)I. We count the number of 1s in ATA in two ways:

n2 − n =
∑
x∈X

rx(rx − 1).

Consider the Si that contain x: they cannot intersect in any other points, so the size
of their union is ≥ rx · (k − 1) + 1, and it is also ≤ n. This implies rx ≤ n/(k − 1),
which gives us

n2 − n ≤
∑
x∈X

n

k − 1
· (rx − 1).



This we have for all x, so we also have

n2 − n ≤
∑
x∈X

n

k − 1
· (min(rx)− 1) =

n2

k − 1
· (min(rx)− 1),

so

1− 1

n
≤ min(rx)− 1

k − 1
.

Since rx and k are integers < n, this implies that rx ≥ k for all x.
Now we count the number of 1s in A in two ways:

nk =
∑
x∈X

rx ≥
∑
x∈X

k = nk.

This means that the inequality rx ≥ k must always be tight, ie rx = k for all x. Going
back to the equation for the number of 1s in ATA we get

n2 − n =
∑
x∈X

rx(rx − 1) = nk(k − 1) ⇒ n = k2 − k + 1.

Now put k = q + 1 to get the required form q2 + q + 1.

Proof 2: Assume that we have a tight example with |S| = |X|. We claim that then
for all x 6= y ∈ X, there is a unique S ∈ S such that x, y ∈ S.
If we prove this claim, then the number of pairs in X equals the number of pairs within
the subsets from S: (

|X|
2

)
= |S| ·

(
k

2

)
= |X| ·

(
k

2

)
.

So |X|−1 = k(k−1) and |X| = k2−k+1; k = q+1 gives the required form q2 +q+1.
Now we prove the claim. Consider x and a set S ∈ S such that x 6∈ S. Then every set
Si that does contain x must intersect S in some other element, call it yi. These yi are
all distinct because these Si are 1-intersecting and already intersect in x. Hence

rx = #{Si : x ∈ Si} = #yi ≤ |S| = k.

On the other hand we have∑
x∈X

rx =
∑
S∈S

|S| = |S| · k = |X| · k,

so the average of the rx is k. This implies that all rx = k.
Consider a pair x 6= y ∈ X, and take some S ∈ S such that y ∈ S but x 6∈ S. Then
each of the rx = k sets Si that contain x must intersect S in some distinct yi, and
because |S| = k we must have yi = y for some i. Therefore x, y ∈ Si. No other set of
S can contain x and y because then they would be 2-intersecting.


