Exercises Week 5

1 Understanding the definitions

1. In the following network find a maximum flow from s to t and a minimum st-cut.

2. Let K_n be the complete graph on n vertices and assume all of the edges have a capacity of one. What is the maximum flow between any two vertices?

3. Let C_n be a cycle with n vertices and assume all of the edges have a capacity of one. What is the maximum flow between any two vertices?

4. Calculate the vertex and edge connectivity of the following graph. Thereafter, chose a vertex and delete it. Calculate the new edge and vertex connectivity. Does the choice of vertex matter?
2 Exercises

1. Using the proposition about 2-connected graphs seen in class (Prop 3.1.1 in the book) prove the following statement: a graph is 2-connected graph if and only if for every pair of vertices there are two pairwise disjoint paths between them.

2. Let G be a k-connected graph, and let xy be an edge of G. Show that G/xy is k-connected if and only if $G - \{x, y\}$ is $(k - 1)$-connected.

3. Let G be a graph and a, b be two vertices of G. Let $X \subseteq V(G) \setminus \{a, b\}$ be an $a - b$ separator in G. Show that X is minimal by inclusion (remember that this is different than minimum) as an $a - b$ separator if and only if every vertex in X has a neighbour in the component C_a of $G - X$ containing a, and another in the component C_b of $G - X$ containing b.

4. Let e be an edge in a 2-connected graph $G \neq K_3$. Show that either $G - e$ or G/e is 2-connected.

Bonus Problem: Prove Hall’s theorem using Menger’s theorem.