Exercises Week 4

1 Understanding the definitions

For the following practice exercises let \(G = (V, E) \) be a graph and \(A \) and \(B \) be two subsets of \(V \).

1. Assume \(|A| = |B| = 2 \), what is the maximum possible number of \(A - B \) disjoint paths in \(G \).

2. Let \(X \) be a subset of \(V \) such that \(X \) separates \(A \) and \(B \). Assume \(|A| = |B| = |X| = k \) and that there is a set of \(k \) disjoint \(A - X \) paths and another set of \(k \) disjoint \(X - B \) paths. Can you guarantee the existence of \(k \) disjoint \(A - B \) paths?

3. Let \(K_n \) denote the complete graph on \(n \) vertices (defined in Assignment 2). Draw the line graph of \(K_3, K_4 \) and \(K_5 \).

4. Find a graph \(G \) such that the line graph of \(G \) is \(K_n \).

5. What is the vertex connectivity of \(K_3 \) and \(K_4 \)? What is the edge connectivity of \(K_3 \) and \(K_4 \)?

2 Exercises

1. Find an algorithm that finds a matching of maximum size, for every graph \(G = (V, E) \). Your algorithm should run in at most \(c|V||E| \) steps, for some (absolute) constant \(c \) that does not depend on the size of the graph.

2. Let \(G \) be a graph on \(2n \) vertices, such that all degrees are at least \(n \). Show that \(G \) has a perfect matching.

3. Show that a partially ordered set of at least \(rs + 1 \) elements contains either a chain of size \(r + 1 \) or an antichain of size \(s + 1 \).

Given out: Thursday, March 12
Bonus Problem: Let $P = \{v_1, \ldots, v_{n+1}, v_{n+2}\}$ be a set of n points in the plane. For $i, j > 2$ we say that $v_i \prec v_j$ if the triangle $v_j v_1 v_2$ contains v_i in its interior. If neither $v_i \prec v_j$ nor $v_j \prec v_i$ is true, then we say $v_i \nleq v_j$. Show that there exists a subset $Q = \{y_1, \ldots, y_{\lfloor \sqrt{n} \rfloor}\} \subseteq P$ of size at least \sqrt{n} such that either $p \nleq q$ for all $p, q \in Q$ or $y_i \prec y_j$ for all $i < j$.

Given out: Thursday, March 12