Exercises Week 3

1. In the following graph find a maximum matching and a minimum vertex cover.

![Graph Image]

Definition 1. For a graph G we say that M is a perfect matching of G if the number of edges of M is equal to $|V(G)|/2$.

2. Prove that in a tree, there is at most one perfect matching.

3. Show that a k-regular (a graph where every vertex has degree equal to k) bipartite graph is a union of k perfect matchings that do not share an edge.

4. Prove that in a bipartite graph G the sum of the maximum number of edges in a matching with the maximum cardinality of an independent set is $|V(G)|$.

5. Prove the following theorem without using Gallai and Milgram’s theorem: For every graph G there is a path cover \mathcal{P} and an independent set I of size $|\mathcal{P}|$ that has exactly one vertex from each path in \mathcal{P}.

6. Prove Konig’s theorem using Gallai and Milgram’s theorem.

7. Let $a_1, a_2, ..., a_n$ be a sequence of distinct real numbers. Show that there is either an increasing subsequence or a decreasing subsequence of size at least \sqrt{n}.

Bonus Problem: Find a partial ordered set that has no infinite antichain but is not a union of finitely many chains.

Given out: Thursday, March 5