Exercises Week 11

Definition. For graphs H_1 and H_2 we define $R(H_1, H_2)$ to be the smallest integer n such that for every graph G with n vertices either H_1 is an induced subgraph of G or H_2 is an induce graph of G.

1. Show that $R(K_3, K_3) = 6$.

2. Calculate $R(P_3, K_3)$ and $R(P_4, P_4)$ (P_k is a path with k vertices).

3. Show that $R(K_s, K_t) \leq R(K_{s-1}, K_t) + R(K_s, K_{t-1})$

4. For a reminder of some basic probability:
 a. Imagine we throw a coin 100 times, what is the expected number of tails.
 b. Imagine we throw a fair dice 5 times. Let X be the sum of the 5 obtained values. What is bigger $P(X \leq 5)$ or $P(X \geq 30)$.
 c. Imagine we throw a fair dice 2 times. Let X be the sum of the two obtained values. Calculate $P(X$ is odd).
 d. A normal deck consists of 52 cards, 13 of each suit, 2 red suits and 2 black suits. What is the probability of taking two cards at random and obtaining a pair? And what is the probability of taking two cards at random and having a pair of cards with the same colour?

Bonus Problem: For every $s \in \mathbb{N}$ there exists a constant c such that every graph on n vertices with no $K_{s,2}$ graph has at most $cn^{3/2}$ edges.